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FOREWORD

The 1982 Army Numerical Analysis and Computers Conference, sponsored by the
Army Mathematics Steering Committee (AMSC), had as its host the U. S. Army
Engineer Waterways Experiment Station, Vicksburg, Mississippi, and was held
on the dates 3-4 February 1982. A short "History" of and the 'ission" of
the Waterways Experiment Station appeared in a booklet issued the attendees
at this meeting. This information together with two photographs is reproduced
nex t.

Administratlve Headquarters

HISTORY

Followingoneofthe Nation'sgreatdisasters- Engineers during World War II, to meet the
the 1927 flood on the Mississippi River-the unique and challenging requirements of the
Waterways Experiment Station was estab- postwar Space Age, and to keep abreast of the
lished in 1929 as a hydraulics laboratory to public's growing concern for protection and
assist the Mississippi River Commission in enhancementof our natural environment, func-
developing and implementing comprehensive tions and facilities were progressively added
plans for flood control in the Lower Mississippi to produce capabilities in the many and diverse
Valley. As the program advanced, it soon fields of endeavor described herein. Because of
became necessary to establish a soils labora- its nationwide scope of activity, the Water-
tory to aid in designing the levee system and ways Experiment Station now operates under
ensure the adequacy of foundations. To sup- direct control of the Chief of Engineers.
port the military missions of the Corps of
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MISSION

The Waterways Kxperiment Station lab- explosives for excavation p)url*w., coml)uter
oratory complex is the principal research, processinganalysis, programming, dataprep-
testing, and d6velopment facility of the U. S. aration, graphics, and related service. Field
Army Corps of Engineers. Its mission is to investigationservicesincludeplanning. aeom-
conceive, plan, and execute engineering inves- plishment, and analysis of: comprehensive cx-
tigations, and research and development stud- ploration of soil and rock formations: compre-
dies, in support of the civil and military mis- hensive examination and inspection of port-
sions of the Chief of Engineers and other land cement concrete structures in service
Federal agencies, through the operation of it including use of nondestructive testing pr(Kwe-
complex of laboratories in the broad fields of dures; instrumentation systems to measure
hydraulics, soil and rock mechanics, concrete, water velocities and directions and to deter-
expelient construction, nuclear and conven- mine presures, deflections, and strains in
tional weapons effects, nuclear and chemical engineering structures; telemetry systems.
explosives excavation, vehicle mobility, envi- principally for hydrologic data; and field inslpc-
ronmental relationships, engineering geology, Lion services including inspection of control
pavements, protective structures, aquatic laboratories and training of field personnel.
plants, water quality, and dredged material. Subject to approval by the Chief of Engineers,
On a reimbursable basis, the Waterways Ex- studies are also undertaken for other Defense
periment Station performs, on an extensive and Federal agencies, private organizations,
national scope, basic and applied research in State Public Works, and foreign governments.
these and related fields, develops methods and The Waterways Experiment Station operates
techniques, tests materials and equipment, the Department of Defense Information Anal-
and provides consulting services in its special- ysis Centers for Pavements and Soils Traffic-
ized fields of competence. Activities include ability, ConcreteTechnology, Hydraulic Enai-
model and prototype studies, engineering and neering, and Soil Mechanics. In connection
analytical design studies including blit and with this fact-disseminatingservice. WKS main-
showk effects. laboratory research concerning tains an exte.nsive scientific and engineering
ixsrtland cement and bituminous concrete mix- reference library and issues publications of
ture proportioning, laboratory testing, field general interest, which can aid materially in
investigations, environmental and water- eliminating duplication of effort throughout
quality studies, dredged material research, theCorpsofEngineersintheconductofexper-
technical advice and assistance on the use of imental studies.
nuclear explosives and large-yield chemical

The theme of the 1982 Conference was "drid Techniques for Partial Differential
Equations'. Not only did all the invited speakers emphasize this important
area but many of the authors of contributed papers treated it. Preceding
the conference on the dates 1-2 February 1982 a tutorial entitled "Review
of Finite Element/Finite Difference Methods for Partial Differential
Equations" was offered by Professors S. Parter, C. de Boor, and J. Strikwerda
of the Mathematics Research Center, University of Wisconsin, Madison,
Wisconsin. The names of the invited speakers and the titles of their
addresses are noted on the following page.
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Speakers and Affiliation Title of Address

Professor J. F. Thompson ELLIPTIC GRID GENERATION TECHNIQUES
Mississippi State University

Dr. Patrick J. Roache INTERACTIVE DESIGN OF LASER ELECTRODES
Ecodynamics Research Associates, Inc. USING ELLIPTIC GRID GENERATION AND

SEMIDIRECT/MARCHING METHODS

Dr. James M. Hyman THE STRUCTURED DESIGN OF ADAPTIVE MESH
Los Alamos Scientific Laboratory METHODS FOR PDE'S

'Dr. Dale A. Anderson SOLUTION ADAPTIVE GRIDS FOR PARTIAL
Iowa State University DIFFERENTIAL EQUATIONS

Those attending this meeting would like to take this occasion to express

their appreciation to Mr. Marden B. Boyd, Chairman of Local Arrangements,

for doing such an outstanding job of arranging physical accommodations

and fr r handling the many problems they posed during the course of the
conference.

Members of the AMSC would like to thank the speakers and all the other

individuals who contributed to the success of this conference. They have

asked that these proceedings Ie issued to enable those scientists "tiat

could not attend, ts well as those present, to have a summary of the
meeting.
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WESCOR - BOUNDARY-FITTED COORDINATE CODE FOR
GENERAL 2D REGIONS WITH OBSTACLES AND BOUNDARY INTRUSIONS

Joe F. Thompson
Department of Aerospace Engineering

Mississippi State University
Drawer A

Mississippi State, MS 39762

Abstract

A code for the generation of boundary-fitted coordinate systems

for general 2D regions with boundaries of arbitrary shape and with in-

ternal obstacles and boundary intrusions , arbitrary in shape and number,

is described and instructions for input and use are given. The coordi-

nate system is generated from the numerical solution of a system of

elliptic partial differential equations with provision for controlling

the spacing of the coordinaLe lines in the field. The transformed

(computational) region is rectangular with the obstacles and intrusions

transformed to slits and/or slabs. A small code to distribute points

on various fundamental curves with exponential concentration is also

described. This front-end code can be used to construct boundary point

distributions for input to the coordinate code. A plot code for the co-

ordinate system is also included. The boundary-fitted coordinate systems

generated by this code may be used as a basis for the numerical solution

of partial differential equations for any physical problem of interest.

Acknowledgement

The interest of Dr. Billy H. Johnson of the Waterwys Experiment

Station in this code and the many fruitful discussions with him during
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INTRODUCTION

The use of numerically-generated boundary-fitted curvilinear coor-

dinate systems as the basis for numerical solution of partial differential

equations on arbitrary regions is now well established. A comprehensive

survey of the generation and use of these coordinate systems has recently

appeared, Ref. [1), and the proceedings of a recent symposium devoted

to this area, Ref. [2), cover the basic techniques involved, as well as

applications in many areas.

Such coordinate systems have the property that some coordinate line

is toincident with each segment of the boundary in the physical region,

so that the complication of boundary shape is effectively removed from

the problem. In the past decade the numerical generation of curvilinear

coordinate systems has provided the key to the development of finite

difference solutions of partial differential equations on regions with

arbitrarily shaped boundaries. Although much of the impetus for these

developments has come from fluid dynamics, the techniques are equally

applicable to heat transfer, electromagnetics, structures, and all other

areas involving field solutions.

With coordinate systems generated to maintain coordinate lines

(surfaces in 3D) coincident with the boundaries, finite difference codes

can be written which are applicable to general configurations without

the need of special procedures at the boundaries. Even when the bound-

aries are in motion, the use of such coordinate systems allows all com-

putation to be done on a fixed grid with a uniform square mesh in the

transformed plane. This greatly simplifies the coding, particularly

with regard to boundary conditions, which can now be represented without

2
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H need of interpolation. It is also possible to distribute the curvilinear

coordinate lines in the physical plane with concentration of lines in regions

of high gradients while maintaining the square grid in the transformed

(computational) plane.

With such systems, the grid points may be thought of as a finite

set of observers of the physical solution, stationed so as to be most

effective in covering all of the action on the field. The structure of

an intersecting net of families of coordinate lines allows the observers

to be readily identified in relation to each other. This results in

much more simple coding than would the use of a triangular structure

or a random distribution of points. The grid generation system provides

some influence of each observer on the others so that when one moves

to get into a" better position, its neighbors will follow in order to

maintain smooth coverage of the field. The curvilinear coordinate system

thus should cover the field, with coordinate lines (surfaces) coincident

with all boundaries. The distribution of lines should be smooth, with

concentration in regions of high gradient.

Numerical solutions of partial differential equations are done on

the curvilinear coordinate system by first transforming all partial

derivatives (or integrals) analytically so that the curvilinear coordinates,

rather than the physical coordinates, become the independent variables.

Normal and tangential derivatives at bou-daries are similarly transformed.

(These transformation relations are given in Ref. [3).) The result is a

set of partial differential equations and boundary conditions in which

all derivatives (and integrals) are with respect to the curvilinear coor-

dinates. These equations may then be expressed as difference equations

IL 3
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on the square grid that is inherent in the transformed plane. There is

thus no need for interpolation regardless of the shape of the boundaries

or the distribution of the curvilinear coordinate lines in the field.

The present report concerns a code for the generation of boundary-

fitted coordinate systems for general 2D regions with boundaries of ar-

bitrary shape and with internal obstacles and boundary intrusions, arbi-

trary in shape and number. The code is described and instructions for

input and use are given. Examples of the application of this code are

given in Ref. [4]-[6]. The coordinate system is generated from the

numerical solution of a system of elliptic partial differential equations

with provision for controlling the spacing of the coordinate lines in

the field. The transformed (computational) region is rectangular with

the obstacles and intrusions transformed to slits and/or slabs. (This

type of transformed configuration and its use are discussed in Ref. [31.)

A small code to distribute points on various fundamental curves with

exponential concentration is also described. This front-end code can be

used to construct boundary point distributions for input to the coordinate

code. A plot code for the coordinate system is also included. The

boundary-fitted coordinate systems generated by this code may be used as

a basis for the numerical solution of partial differential equations for

any physical problem of interest.

The elliptic generation system is discussed in Part A and the op-

eration and use of the codes are covered in Part B.
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PART A

ELLIPTIC GENERATION SYSTEM

ELLIPTIC GENERATION SYSTEM

The generation of boundary-fitted coordinates from elliptic systems

and the use thereof in the numerical solution of the Navier-Stokes e-

quations is surveyed in Ref. 11]. The foundations of elliptic generation

systems are discussed in detail in Ref. (7], and basic configurations of

the transformed plane are covered in Ref. [3]. The discussion in this

section is an introduction to the subject given by Johnson in Ref. (51

and is incorporated here for convenience.

Basic Ideas

Suppose one is interested in solving a differential system involving

two concentric circles, such as shown in Fig. i, where r - constant - n1

on the inner circle and r - constant Ti2 on the outer circle, and e

varies monotonically over the same range over both the inner and outer

boundaries, i.e., 0 to 3600.

A cylindrical coordinate system is the obvious choice since a coor-

dinate line, i.e., a line of constant radius, coincides with each boundary.

If one now pulls the interior regions between the two circles

5



apart at e - 00 (or e- 3600) and folds outward, it is easy to visualize

the region D becoming the rectangular region D2 . Likewise, it should

be obvious that the right and left sides of the rectangle are reentrant

boundaries since e - 00 and e - 360* are ccincident in region Di . If

one computes a derivative in the cylindrical system at e - 0, values

at the points marked x and o on both sides might be used. Thus, these

same points, as shown in the rectangular region, would be used for a

similar derivative in region D2. This is the reason for calling these

boundaries reentrant boundaries. As shown, the boundary of the inner

circle becomes the bottom of the rectangular region while the boundary

of the outer circle becomes the top..

The general boundary-fitted system is completely analogous to the

system discussed above. In Fig. 2 the curvilinear coordinate, n, is

defined to be constant on the inner boundary in the same way that the

curvilinear coordiante, r, is defined to be constant on the inner circle

in the cylindrical coordinate system. Similarly, n is defined to be

constant at a different value on the outer boundary. The other curvi-

linear coordinate, , is defined to vary monotonically over the same

range on both the inner and outer boundaries, as the curvilinear coordi-

nate, 0, varies from 0 to 27r around both the inner and outer circles in

cylindrical coordinates. It would be just as meaningless to have a dif-

ferent range for C on the inner and outer boundaries as it would be to

have 6 increase by something other than 27 around one of the circles in

cylindrical coordinates. It is this fact that & has the same range on

both boundaries that causes the transformed field to be rectangular.

Note that the actual values of the coordinates, n and &, are irrelevant,

6



in the same way that r and 0 may be expressed in different units in cylin-

drical coordinates.

Now that the values of the coordinates, n and r, have been completely

specified on all the boundaries of a closed field, it remains to define

the values in the interior of the field in terms of these boundary values.

Such a task immediately calls to mind elliptic partial differential

equations, since the solution of such an equation is completely defined

in the interior of a region by its values on the boundary of the region.

Thus if the coordinates, F and ri, are taken as the solutions of any two

elliptic partial differential equations, say L(&) 0 0, D(n) = 0, where

L and D represent elliptic operators, then E and n will be determined

at each point in the interior of the field by the specified values on

the boundary. One condition must be put on the elliptic system chosen,

since the same pair of values (E,n) must not occur at more than one point

in the field or the coordinate system will be ambiguous. This condition

can be met by choosing elliptic partial differential equations exhibiting

extremum principles that preclude the occurrence of extrema in the in-

terior of the field.

This may be illustrated with resort to the governing equation for

a stretched membrane. Consider a membrane actached to a flat platc

around a closed circuit of arbitrary shape as shown in Fig. 3. Now let

a cylinder of arbitrary flat crmss section be pusheJ up through the plate,

stretching the membrane upward. The vertical dispLacement, h, of the

membrane will be described by Laplace's equation, V2h - 0, with h - h1

and h2, respectively, on the circuits of contact with the plate and cyl-

inder. If equally spaced grid lines encircling the cylinder had been

7



drawn on the membrane before displacement, these lines would appear to

move closer to the cylinder when viewed from above after displacement

of the membrane. None of these lines would cross, however.

Now let pressure be applied on the upper side of the membrane as

diagrammed in Fig. 4a. This will cause the slope at the cylinder to

steepen, with the effect that the lines will appear to be drawn even

closer to the cylinder but still without crossing. This situation cor-

responds to the Poisson equation, V2h = p, where p is the applied pressure.

If a variable pressure is applied on both sides of the membrane to a

sufficient degree, it is possible to make the membrane assume an S shape

as shown in Fig. 4b. In this case the encircling lines have crossed,

and consequently, a point on the plate can no longer be identified by

specifying the encircling line that it lies below (together with a radial

ray). This latter case corresponds to a right-hand side of the Poisson

equation that is not of one sign over the entire membrane, in which case

the extremum principles of Poisson's equation are lost.

Note, however, that if the differential pressure that is applied

across the membrane is not too large, the S shape will not be reached.

In this case the lines donot cross, but rather the lines seem to con-

centrate near a line in the interior of the field. Thus the existence

of an extremum principle is a sufficient condition to prevent double-

valuedness in the coordinate system but is not a necessary condition.

Care must be exercised in its absence, however.

8



Mathemat ical Development

From the discussion above, a logical choice of the elliptic gen-

erating system is Poisson's equation. Thus, based upon Fig. 2, the

basic problem is to solve

Sxx+ -y " p

(1)

qxx yy

with boundary conditions,

& 1 (xy) on r1

n - constant = n1 on r1
1 1 (2)

& 2(xy) on r2

cl constant - n2 on r2

The arbitrary curve joining rI and r2 in the physical plane specifies

a branch cut for the multiple-valued function, Ux,y). Thus the values

of the coordinate functions x(t,n) and y(F,n) coincide along r3

and r4 , and these functions and their derivatives are continuous from

r3 to r4. Therefore boundary conditions are neither required nor allowed

on r and r As previously noted, boundaries with these properties
3 4

are designated reentrant boundaries.

The functions P and Q may be chosen to cause the coordinate lines

to concentrate as desired, in analogy with the membrane discussed above.

9



As discussed in Ref. [7], negative values of Q result in a superharmonic

solution and cause -lines to move toward the n-line having the lowest

value of n, while positive values have the opposite effect. Considering

the C solution to be superharmonic results in the interior of the -

constant lines being rotated in a counterclockwise direction in the physical

plane; whereas if the -equation is subharmonic, i.e., P is positive,

the lines are rotated in the clockwise direction. These effects

are discussed in more detail below. It has been found convenient, as

discussed in Ref. [7], to redefine the control functions
//

P , (Xn2 +yn 2 )P

Qj' (x 2 + y 2)Q

A major purpose of this coordinate system control is to concentrate

lines in viscous boundary layers near solid surfaces, and some automated

procedures for this purpose have been developed (cf. Ref. [7]). Control is

also useful to improve grid spacing and configuration when complicated

geometries are involved.

Since all numerical computations are to be performed in the rec-

tangular transformed plane, it is necessary to interchange the dependent

and independent variables in Eq. (1). Using the relations given in

Ref. [3], Eq. (1) becomes

axE- 2$x n + -Xnn + aPx + yOx n = 0

(3)

~y - 2Byn + YYnn + aPy + -Yn M 0

10



where

OL X2 + Y2

n n

8w 2~ + yy
- +

J = Jacobian of the transformation = xen x y

with the transformed boundary conditions

x = fI( ,nl) on r*

y = gl(C,) on r*

x = f 2 (4,q 2 ) on r*

y = 92(&,n on r*

Again considering Fig. 2, the boundary functions fl, f2 1 g,, and 92

are specified by the known shape of the contours r and r2 and the speci-

fied distribution of 4 thereon. Boundary data are neither required nor

allowed along the reentrant boundaries,r3 and r4. Although the new

system of equations is more complex than the original system, the boundary

conditions are specified on straight boundaries and the coordinate spacing

in the transformed plane is uniform. Computationally, these advantages

far outweigh any disadvantages resulting from the extra complexity of

the equations to be solved.

11 :
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The boundary-fitted coordinate system so generated has a constant

n- line coincident with each boundary in the physical plane. The 6-

lines may be spaced in any manner desired around the boundaries by

specification of x,y at the equispaced &-points on the r* and r*

lines of the transformed plane. As noted above, the entire side boundaries

are reentrant boundaries, and thus neither require nor allow specification

of x,y thereon.

Now the rectangular transformed grid is set up to be the size

desired for a particular problem. Since the values of C and n are

meaningless in the transformed plane, the n-lines are assumed to run

from 1 to the number of n-lines desired in the physical plane. Likewise,

the E-lines are numbered I to the number specified on the boundaries of

the physical plane. The grid spacing in both the and n directions of

the transformed plane is taken as unity. Second-order central difference

expressions are used to approximate all derivatives.

Only one of a pair of reentrant boundaries is considered as a com-

putation line since the (x,y) are equal on both. As an example of how

a reentrant boundary is handled, consider the grid in Fig. 5 where "o"

indicates a computation point and "A" a boundary point. The derivative

of x with respect to & along i - 1 would be written as

"la (x2 - xIAx-Ij)/2

Again, it should be stressed that all computations are performed

on the rectangular field with square mesh in the transformed plane.

The resulting set of nonlinear difference equations, two for each point,

are solved by accelerated Gauss-Seidel (SOR) iLeration using overrelaxation.

12



Some discussion of this technique is presented in Ref. (8].

It might be noted that both orthogonal and conformal transformations

are special cases of the generation of boundary-fitted coordinate systems

as the solutions of elliptic partial differential systems. In both of

these cases the curvilinear coordinates satisfy Laplace's equation with

one coordinate constant on each boundary, and the normal derivative of

the other coordinate equal to zero on each boundary. A conformal system

also requires a c-rtain relation between the range of the two curvilinear

coordinates.

The same procedure may be extended to regions that are more than

doubly connected, i.e., have more than two closed boundaries, or equiv-

alently, more than one body within a single outer body. A river reach

containing more than one island would be an example. One such trans-

formation for such a problem is illustrated in Fig. 6.

Types of Boundary-Fitted Coordinate Systems

The above discussion of the generation of boundary-fitted coordinates

has centered around the idea of using branch cuts to reduce multiply-

connected regions to simply-connected ones in the transformed plane.

An example using branch cuts is sketched in Fig. 7. Here the body in

the field transforms to the entire bottom boundary of the transformed

plane, while the entire surrounding boundary, 1 - 2 - 3 - 4 - 5 - 6,

transforms to the top boundary of the transformed plane. The sides of

the transformed plane are reentrant boundar.ies, corresponding to the cut,

8 - 1 and 7 - 6, in the physical field. Thus, in the difference equations,

points lying just to the right of the right boundary are identical with

corresponding points just to the right of the left boundary. This is

13



the same type of circumstance that occurs with the familiar cylindrical

coordinate system, where 0 - 3610 is the same point as e - V. Similarly,

points just outside the left boundary are coincident with points just

inside the right boundary.

Many variations of this type of coordinate system can be produceo,

cf. Ref. [ 3]. For instance, the transformed plane corresponding to the

same physical field shown in Fig. 7 can be rearranged as shown in Fig.

8. Now the reentrant boundary, corresponding to the cut, is located on

a portion of the bottom of the transformed plane. The coordinate lines

that result from these two types of arrangements of the transformed plane

are shown on each of the figures. As with all the boundary-fitted coor-

dinate systems, the grid is square in the transformed plane regardless

of the line configuration in the physical plane.

Multiple-body fields can also be transformed to simply connected

regions, an example of which is shown in Fig. 9 . Again there are many

different possible arrangements of the transformed plane, all of which

are created by sliding the boundary segments around the rectangular

boundary of the transformed plane. A number of examples are given in

Ref. [ 3] and Ref. [8].

The other type of coordinate system transformation available leaves

the multiplicity of the region unchanged. In this case, bodies in the

interior of the physical field are transformed to rectangular slabs or

even slits in the transformed plane. Three different possibilities are

shown in Fig. 10 for the physical plane shown in Fig. 7. In the case of

slits, the physical coordinates and solution variables in general have

different values at points on the two sides Of the slit, even though such

14



points are coincident in the transformed plane. This does not introduce

any approximations, but simply adds a little more bookkeeping to the

code. Fields with more than one body in the interior simply result in

a like number of slabs and/or slits in the transformed plane.

Comparison of all of the above figures shows that different types

of transformation may be more appropriate for different physical config-

urations. A further example of this is the configuration in Fig. 11,

shown with three variations. Generally, the slit/slab form is more

appropriate for channel-like physinal configurations having bodies in

the interior, while the other form works particularly well for "unbounded"

regions involving external flow about bodies and for regions having an

outer boundary that forms a continuous circLit without pronounced corners

around the field. The slab is generally superior to the slit unless

the boundary has a sharp point. The case of a single channel without

any interior bodies is.the same in either form. An example of a river

reach containing two islands, using horizontal slits rather than the

branch cuts previously presented in Fig. 6 ,is given in Fig. 12.

Data Required for Generation of Boundary-Fitted Coordinates

The basic input or data required to generate a boundary-fitted

coordinate system are the physical coordinates of points on the boundaries.

For example, with reference to Fig. 7, the coordinates of points on the

body from 8 around to 7 would be required, with these points being

spaced in any manner desired as long as there is a continuous progression

from 8 to 7. Similarly, the (x,y) values for points on the outer boundary

from 1 to 2, etc., on around to 6 would be required. Again these points

15



may be spaced around the boundary as desired, with no restriction as to

how many points lie on each boundary segment, e.g., between 1 and 2 or

between 4 and 5, provided that only the total number of points from 1

around to 6 is the same as from 8 to 7. The coordinates of points must

be specified on the entirety of these lines. The coordinates of points

on teentrant segments of the boundary in the transformed plane, e.g., I

to 8 and 6 to 7, are not specified but are free to be determined by the

solution.

Similarly, with reference to Fig. lOa, the coordinaLeS of outer

boundary points are required in the slab/slit transformations. In

addition, body points from 6 to 1 on the lower half of the body and

from 1 to 6 on the top half are required. No calculations would be

made on the slab sides of Figure lOc or slits of Figures lOa and 1Ob

since values at such points are fixed. Points in the interior of a

slab are irrelevant. As always, points may be spaced as desired around

the bodies and cuter boundary segments.

Computer Time Required for Generation of Boundary-Fitted Coordinates

Ref. [ 8] indicates that the typical time required to generate a

one-body coordinate ;vstem without coordinate system control (the

functions P and Q are set to zero) is about 2 min on a UNIVAC 1106 com-

puter for a 70 x 30 field (70 points on the body). If P and Q are not

zero, so that the spacing of coordinate lines is controlled, the computation

time increases. Multiple-body coordinate systems typically require about

6 min for a 70 x 40 field. If these same computations were to be made

on a CDC-7600 computer, the times quoted above would be reduced by perhaps

16



an order of magnitude or more. Therefore, the cost of generating

boundary-fitted coordinate systems for use in numerical models will

be generally insignificant.

COORDINATE SYSTEM CONTROL

Control of the coordinate line spacing in the field can be exercised

through the non-zero values given to the Laplacian of the curvilinear

coordinates as in Eq. (1), as noted above. With a zero Laplacian, the

lines tend to be closely spaced near convex segments and more widely

spaced near concave segments. A negative value of the Laplacian causes

the lines to move toward lower values of the curvilinear coordinate.

Attraction to Other Coordinate Lines and/or Points

This effect is utilized as in Ref. [ 8] to achieve attraction of

coordinate lines to other coordinate lines and/or points by taking the

form of the control functions to be

n

P( ,n)= - ai sign(t - Ci)exp(-cil- -il)

i=l
(5)

m
mbi sign(Q - i)exp{-d 1[(t - E.) 2 + (n - ni)21 }

i=l

and an analogous form for Q(C,n) with & and n interchanged. The effects

of such control is illustrated in Refs. 1 7] and [ 8]. The efficacy

of control to improve the accuracy of a physical solution done on the

coordinate system has been noted.

In the P function, the effect of the amplitude, ai, is to attract

&-coordinate lines toward the %i-line, while the effect of the amplitude

17



b i is to attract 4-lines toward the single point (ivr). Note that

this attraction to a point is actually attraction of &-lines to a point

on another C-line, and, as such, acts normal to the &-line through the

point. There is no attraction of n-lines to this point via the P

function. In each case the range of the attraction effect is determined

by the decay factors, ci and d . With the inclusion of the sign changing

function, the attraction occurs on both sides of the t-line, or the

(i' ni ) point, as the case may be. Without this function, attraction

occurs only on the side toward increasing C., with repulsion occurring on

the other side. A negative amplitude simply reverses all of the above-

described effects, i.e., attraction becomes repulsion and vice versa.

The effect of the Q function of n-lines follows analogously. It should

be noted that P and Q are discontinuous because of the sign function and

are equal to sums of second derivatives. As a consequence, the coordinates

have continuous first derivatives but discontinuous second derivatives

at controlled locations.

In the case of a boundary that is an n-line, positive amplitudes

in the Q function will cause ri-lines off the boundary to move closer

to the boundary, assuming that n increases off the boundary. The effect

of the P function will be to alter the angle at which the &-lines inter-

sect the boundary, since the points on the boundary are fixed, with the

&-lines tending to lean in the direction of decreasing E. If the boundary

is such that n decreases off the boundary, then the amplitudes in the 0

function mustbe negative to achieve attraction to the boundary. In

any case, the amplitudes ai cause the effects to occur all along the

boundary, while the effects of the amplitudes bi occur only near se-

lected points on the boundary.

18
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Attraction to Space Curves and/or Points

If the attraction line and/or the attraction points are in the

field, rather than on a boundary, then the attraction is not to a fixed

line or point in space, since the attraction line or points are themselves

solutions of the system of equations, the functions P and Q being functions
of the variables and n. It is, of course, also possible to take these

control functions as functions of x and y, instead of and n, and achieve

attraction to fixed lines and/or points in the physical field. This

case becomes somewhat more complicated, since it must be ensured that

coordinate lines are not attracted parallel to themselves. The following

development was given in Ref. (9].

Recall that in the above discussion, n-lines are attracted to other

n-lines , and &-lines are attracted to other -lines . It is unreasonable,

of course, to attempt to attract n-lines to &-lines , since that would

have the effect of collapsing the coordinate system:

F -line

n-line

When, however, the attraction is to be to certain fixed lines in

x-y space, defined by curves y - f(x), care must be exercised to avoid

attempting to attract n or k lines to specified curves that cut the n

or lines at large angles. Thus, in the figure below:

19
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l-line

it is unreasonable to attract lines to the curve f(x), while it is

natural to attract the n-lines to f(x).

However in the gereral situation, the specified line f(x) will not

necessarily be aligned with either a ( or n line along its entire length.

Since it is unreasonable to attract a line tangentially to itself, some

provision is necessary to decrease the attraction to zero as the angle

between the coordinate line and the given line f(x) goes to 90'. This

can be accomplished by multipl.ying the attraotion function by the cosine

of the angle between the coordinate line and the line f(x). It is also

necessary to change the sign on the attraction function on either side

of the line f(x). This can be done by multiplying by the sine of the

angle between the line f(x) and the vector to the point on coordinate

line.

These two purposes can be accomplished as follows. Let a general

point on the C-line be located by the vector R(x,y), and let the attrac- V
tion line y - f(x) be specified by the collection of points S(xiY 1 ),

i - 1, 2, -- , n. Let the unit tangent to the attraction line be

t(xi,yi), and the unit tangent to a C-line be T

20
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The control functions P(xy) and QO(x,y) may then be logically taken as

n (tix (R- SP k

P(x,y)"- ai(ti T ()) ( R- exp(-diIR- Sif)

i=l " -

(6)

Q(x,y) -- a T(O) " ()) ( ix - .1i exp(dIR SJ)
i ''R- S e

where k is the unit vector normal to the two-dimensional plane. These

relations are evident from the figurebelow:

74) Ii -line

attraction line

Here the term ti • serves to decrease the attraction to zero as the

angle between the E-line and the attraction line approaches 900. The

cross product term changes the sign of the control function on either

side of the attraction line to produce attraction on both sides of the

line. Again the strength and range of the attraction are determined by

the amplitude, ai, and the decay factor, di, respectively.
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These functions depend on x and y through both R and T or T and

thus must be recalculated at each point as the iterative solution proceeds.

This form of coordinate control will therefore be more expenr:ive than

that based on attraction to other coordinate lines.

There is no real distinction between "line" and "point" attraction

with this type of attraction. "Line" attraction here is simply attraction

to a group of points that form a line f(x). If line attraction is speci-

fied, then the tangent to the line f(x) is computed from the adjacent

points on the line. If point attraction is specified, then the "tangent"

must be input for each point. The tangents to the coordinate lines are

computed from the relations given in Ref. 13].

Control Functions from Boundary-Point Distributions

With the Laplacians of the coordinates equal to zero, the line

spacing in the field will not be greatly affected by the distribution

of the boundary points, except very near the boundaries. In fact if

the control functions are not consistent with the boundary point dis-

tribution very large changes in the metric coefficients will occur near

the boundaries. Values of the control functions may be determined from

the 1D boundary point distribution such that the line spacing in the

field will generally follow that on the boundary. This concept was in-

troduced in Ref. (10 ] and is discussed in Ref. [7] as generalized t41 3D

in Ref. [11 1. However, in the use of control functions that are

1D, it should be noted that excessive concentration of lines can occur

near sharp convex corners as discussed in Ref. [7].

With Eq. (3) evaluated in ID on a straight n-line conincident with

the x-axis we have, since x n a y = 0 in this case,
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axe€ =- x (7)

The reason for the choice of the form of the control functions in Eq. 3

becomes clear, since a cancels from this equation to leave

P() - -x C/x (8)

Thus the control function, P(E), can be determined from the specified

boundary point distribution, x(). Generalizing, x is replaced by arc

length along the &-line , and the effect will be qualitatively the same

when this line is curved. (cf. Ref. (71 for more detail.)

If this value of the control function is then used throughout the

field, the &-line distribtuion in the field will generally follow the

specified distribution of the end points of these lines on the boundary.

With different point distributions on two boundaries, values of the

control function P(C,n) in the field between can be determined by 1D

interpolation in n between the values determined in the above manner on

the two n-line boundaries. An analogous development applies for the

determination of the control function Q(t,) from interpolation in

between 1D evaluations on two &-line boundaries. This interpolation

was introduced in Ref. [12 in a 2D coordinate system.

SYSTEM CONFIGURATION

In the present model, the physical field may have both external and

internal boundaries of arbitrary shape. The field in the transformed

plane is rectangular with rectangular holes corresponding to any internal

boundaries. This configuration is illustrated in Fig. 13. Boundary

23
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Intrusions may be transformed either to portions of the rectangular outer

boundary of the transformed region, as in Fig. 13, or to slabs protruding

inward from this boundary as in Fig. 14. A general discussion of possible

configurations is given n Ref. [3]. Various outlet shapes and locations,

as well as internal obstacles and boundary protrusions such as veirs,

can be treated by the same code with only changes in the nput. This

Input consists of the physical cartesian coordinates of the points se-

lected on each segment of the physical boundaries. A small front-end

code was written to provide certain line segments (linear, quadratic,

and cubic polynomials) with linear or exponential distributions thereon

automatically.

The code autonmtically calculates control functions, P(4,r) and

Q(&,n), for the coordinate generation equations (3) from the boundary

point distribution as discussed above. These functions are calculated

from the 1D relations on each boundary segment and are interpolated

linearly into the field between opposing boundary sections in the

transformed plane.

In addition, attraction of coordinate lines to other coordinate

lines and/or pointsand to specified lines and/or points in space, also

discussed above, is provided through input quantities. This input

consists of the coordinate lines and/or pointstand the specified space

curves and/or points to which the attraction is to be made and the ampli-

tudes and decay factors for the corresponding attractions.

Several examples of coordinate systems produced by this code are

given In Figs. 15-19. Examples of applications of such systems appear

In Ref. [4-[6]. Two further examples, together with complete input

listings for the code, follow the description of the code n Part B.
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Figure 3. Illustration of extremum principle for

Laplace's equation
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Figure 4. Illustration of extremim psaiciple for

Poisson's equation
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Figure 7. Example of coordinates generated using a branch
cut. Placement of body is such that sides are
reentrant boundaries.
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Figure 8. Example of coordinates generated using a branch cut.
Placement of body is such that reentrant boundaries lie
on bottol line of the transformed plane.
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Figure 12. Coordinates generated with slits for a
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Figure 13. Example of coordinates generated in a
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Figure 14. Boundary-fitted coordinates for a
river containing dikes
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Fig. 17. Hypothetical Estuary Similar to [Delaware River
(from B. H. Johnson, Wate~rways Fxperiment St:,t ion, '.icksbiirg)
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Fig. 19. Transformation to Slits
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PART B

COORD INATE CODE

The present code differs from the TOMCAT code described in Ref. 181

int that the latter does not provide for slits and/or slabs in the in-

terior of the transformed plane. Also branch cuts (if used) in the present

code are restricted to the entire left and right sides of the outer rec-

tangle in the transformed region. Finally, the present. code includes a

more e.terive means of coordinate line control, involving attraction to

spae. lines/or points and also involving determination from boundary

point distrihutions.

The code for the numerical generation of tile boundary-fitted coor-

dinate system from the equations of Part A, together with a front-end

code to generate boundary point distributions and a plot code, is discussed

below. These codes were implemented on the CRAY-l computer at the Air

Force Woapons Laboratory, Kirtland AFB, Now Mexico.

WESCI)R (Coordilate Syitcm)

This code generates the boundary-fitted coordinate system by solving

a set of elliptic partial differential eqjations by SOR iteration as

discussed above in Part A. Attraction of coordinate lines to other coor-

dinate lines and/or points,and to specified lines and/or points in space,

is included, The shape and configuration of the bonndarv are arbitrary,

except that the miter bondaty must be closed. T -er, tav be an arbitrary

number of int rril . 'l )osed booydari,. tran stormiln, t, ,ittier slits or

s. iihr a, d ir-e-u;-cd in ii rt A.

The iplit ro this cod rons iStl of tilt, pi.rt di qribition on the

huinda rv (if th,, r , 'evra] ',iant it-Ie' i ornn.- ion with the control
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of the coordinate line spacing, and the parameters associated with the

iterative solution process. This input is described in det il below.

The file output from the code LINES can be used directly as a part of

the input to this code from file 10.

Boundary Configurations

Arrays. The dependent variable field array-, :ire X and Y, which cuntain

the cartesian coordinates (x,y) for each grid point. The indices (I,.J)

of these arrays correspond to tht. curvilinear coordinates (%,r), and

run from 1 to IMAX and JMAX, respectively. The increments, t. and :,r,

in the difference expressions are thus equal to unity by construction.

(These increments cancel from all the difference equations and are thus

Irrelevant.)

In order to treat slit configurations, for which a closed interior

boundary in the physical region is collapsed to a slit in the transformed

region, there are four other coordinate arrays, XT,, YT. and XU, YU, which

contain the cirtesian coordinates on the two sides of the slit. The

first index of these arrays corrosponds to the locaL ion of the point

relative to tl.- left end uf horizontal I its, or rul t iVe to the lower

end of vert ical sl its, cHis end i:d,. bu inv J'sin teJi unity. The other

index indentifl.vs the particula- slit. Fi r ',- r'z,1 .l -A its the Loor-
.a

dinates on t lu.' idr .i , in: ".[ and fl, i t..;t- on tile upper

side are in X" and YV':. Vertical. slits hzve the ctoidinate- on the left

side in XL a;, ',[., irnd those on the right side in X1 ,ind Yl.

There is also a field array 1.SI.IT(I,.J) containing the point type

for each point. This array identifies Cach point as being on a slit,

adjacent to a slit, on a slab side, on an outer boundary, in the field,
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or out of the computation region (ingide a slab), as illustrated on the

diagram below:

0 adjacent to slit

adjacent to slit

on slit o n slit

o field
on outer
boundary

on slab side

* inside slab
(out of region)

out of region 0o oue boundary
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The coordinate system control functions, ' and , r each poi:lt

are contained in the field arrays RXI(I,.J) and RETA(1,J), respectively.

There are also arrays RXIL, RETAL end RXTU, RETAU, analogous to the

array XL, etc., discussed above, which contain the values of these

functions on the two sides of the slits. The acceleration parameters

for the iteration at each point are in the field array WACC(l,J).

Configuration types. The cartesian coordinates of the points on the

entire boundary of the physical region, i.e., the closed outer boundary

and any internal boundaries, must be input. There are two basic types

of overall configuration included in the codc. In one the convectivity

of the transformed region is the same as that of the physical region,

i.e., the closed outer boundary of the physical region corresponds to a

closed outer boundary of the transformed region. '.ith the other tvpe,

one branch cut is introduced in the physic:il regi,:n so that the clos-,d

outer boundary and one inner bo,.rdary of the physical region transform

to the bottom and top of a rectangle forming the outer boundary of the

transformed rogion. The left and right sides of the transformed region

then cocrespond to the branch cut in the physical region. Points on

these sides therefore are not input but rather are calculated as part of

the solution.

Rectangular outer boundary. If the outer boundary of the physical

region is to correspond to a rectangle forming the outer boundary of the

transformed region, then the points on this boundary c-n he input in

clockwise succession around the outer rectangle of thle transformed region

as in the diagram below. If the outer boundary of th.. plvsical region
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is a circle, then the points on this circle can be generated internally

by the code, requiring input only of the radius (YINFIN) and cartesian

coordinates of the center (XOINF,YMINF) of the circle, together with

the cartesian coordinates of the angular position (AINFIN) and indices

(INFXI,IFETA) of the point at which the clockwise succession of points

around the outer rectangle is to start, and the total number of points

on the circle (NINF). As above, the points will be placed in clockwise

succession around the circle or boundary of the physical region and

the rectangular boundary of the transformed region. The treatment of

the outer boundary is determined by the input parameter IBNDRY.

An alternative procedure for inputting the outer boundary is to input

each straight segment of this boundary of the transformed region as a

slab side in the manner now to be described for internal boundaries.

Internal boundaries (slits/slabs). Internal boundaries in overall

configurations of the former type introduced above correspond to either

slits or slabs in the transformed region:

U2
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In the case of slits, the points are input in clockwise succession

beginning at the right end for horizontal slits or ctourter-clockwisu be-

ginning with the top for vertical slits, and are nit. d in t1 ,e arravs XT

etc., described above. For slabs, the four sides arc input independently

and the succession of points may be in either direction on each side.

In fact, it is not even necessary for the four sides of one slab to be input

in succession; the sides of all slabs in the field maly be placed in any

order in the input. The coordinates of the points oa slab sides are

placed directly in the field arrays X and Y. This input of boundary

segments corresponding to slits or slabs is accomplished as follows.

For horizontal slits, the &-indices(I) of the left and right ends

areplaced in the arrays LBI and LB2, respectively. The v,-index (J) of

the entire slit or slab side is placed in the array LB3. In the case

of vertical slits, the -indices (J) of the bottom and top go in LBl

and LB2, while the -index (I) goes in LB3. Slab sides are treated in

the same manner except that, since the points thereon may be input in

either direction, LBI and LB2 contain the indices of Lii. end points of

the side in either order, i.e., LBI may exceed LB.. 'Iht point.. ark: input

from LBI to I.B2.

For both slits and slab sides, a flav, is i. - :,i n irr ' i. v frY1

to designate the segment as a slit or slab side i,i -, zontal or verticai

orientation:

+1 horizontal slit

+2 vertical slit

-1 horizontal slab side

-2 vertical slab side

The code computes the number of points on the slit or .;lab side from the
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values of LBI and LB2 and places this value in the array LPT. All of these

arrays are single-dimension arrays, there being one set of parameters

for each slit or slab side. The total number of slits and slab sides,

including those on the outer boundary as described below, is specified

by the input parameter NBDY.

Outer boundary intrusions. As noted above, the outer boundary can be

input in segments as slab sides. This is illustrated below.

This is done just as described above for Internal boundaries except that

values of -ii and -12, respectively, are input for LTYPE for horizontil

and vertical segments of the outer Loundary.

Branch cut. With the other type of overall configuration, involving

a branch cut, the outer boundary and the internal boundary connected to

the cut are both input clockwise from the points joined by the cut. As

noted ab- 'e, these points are placed on the top and bottom of the rec-

tangle forming the outer boundary of the transformed region. This type

of configuration Is elected through the input parameter NREN. Additional

internal boundaries can be input as either slits or slabs exactly as

described above.

Boundary input. Provision is made for reading the boundary points

either from card images, (x and y for one point to a card in 2F10.O
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format) or from the output of the LINES code described below, as de-

termined by the input parameter ISLIT. The outer boundary must be input

as segments of slab sides if this boundary is included on the output of

the LINES code.

Control Functions

Coordinate system control is included through both the attraction

of coordinate lines to other coordinate lines and/or points and to speci-

fied lines and/or points in the physical region, as described in Part A.

(For completeness, provision is made for repulsion as well as attraction.)

Attraction to coordinate lines and/or points. The first of these

requires the input of the index (indices) of the curvilinear coordinate

line, together with the associated attraction amplitude and decay factor,

for each line (point) to which the attraction is made. For attraction

to lines, the index, amplitude, and decay factor are placed in the arrays

JLN, ALN, and DLN, respectively, while for attraction to points, the

corresponding arrays IPT, JPT, APT, and DPT are used.

Attraction to space lines and/or points. For attraction to specified

lines and/or points in space, the input is similar in regard to the ampli-

tude and decay factors, using the arrays APT and DPT. It is necessary,

of course, to also input the cartesian coordinates of the points on the

line, or the isolated points, to which the attraction is made. These

coordinates are placed in the arrays XPT and YPT. For attraction to

points, it is also necessary to input the components of a vector nor:'al

to the desired direction of the attraction for each poiTit, these comI-

ponents being placed in the arrays VEC1 and VEC2.
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Effect of boundary point distribution. In addition to the above types

of attraction, the control functions also include the effect of the

boundary point distribution discussed in Part A. This is done by evalu-

ating one of the control functions on each boundary segment in the

transformed region (P on n- lines, Q on &- lines) from the one-dimen-

sional relations hi terms of arc length discussed in Part A. These vatues

are placed in the arrays RXI and RETA, except for slits where the arrays

RXIL, etc., are used in the manner described above for XL, etc. Values

of the control functions in the field are then interpolated linearly

between facing oundary segments, P being interpolated vertically and

Q horizontally,as illustrated in the following diagram.

A,

P :P

This evaluation is done first and then the contributions to the control

functions from the line and point attraction is added to the arrays

RXI and RETA in the field.

Iterative Solution

Initial guess. The initial guess for the values of the cartesian co-

ordinates in the field, i.e., the values in the arrays X and Y in the

field, that is used to start the iterative solution is obtained by the
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same type of interpolation between facing segments described above for

the control functions, except that both X and Y are interpolated between

the pair of facing segments with the smallest separation in the transformed

region. Thus values at point 1 in the figure below would be obtained

by horizontal interpolation, but at 2 the interpolation would be vertical:

2

* S

Since very strong control functions can sometimes make the conver-

gence of the iterative solution difficult in complicated configurations,

provision is made for first converging the field with the control functions

set to zero and then re-converging in steps as these functions are

increased to full value. Actually this feature Ls rarely needed.

Acceleration parameters. As discussed in Part A the solution for the

cartesian coordinates in the field is done by SOR iteration. Either a

uniform value of the acceleration parameter can be input -s R(l) or the

code will calculate a locally optimum value at each point in the field,

these values being placed in the field array WACC. This calculation

is discussed in Ref.[8],where it is noted that the values obtained are

not truly optimum in all cases. Therefore this provision has not been

found to be as generally efficient as simply using a uniform value, since the

calculation of the acceleration parameter involves a square root and

hence is time consuming. The uniform value should be around 1.85 for
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large fields. This value should be decreased for strong control functions

or small fields.

Iterative process. The iteration continues until either the magni-

tude of the changes in the values of x and y at each point in the field

between iterations is less than the tolerances input as R(2) and R(3),

respectively, or until the maximum number of iterations allowed (input

as ITER) is reached. In the latter case the partially converged solu-

tion is stored on file 10 for restart. The input parameter IDISK can

cause the code to read this partially converged solution from file 10

and continue the iterations. This parameter also controls the dispo-

sition of the final solution, which is normally stored on file 11 for

use in the flow solution, but can be simply printed without being stored

if desired. Various other input parameters, such as prinat options, etc.,

are explained in the detailed input instructions given below and in

the source listing.

Code Operation

Initial input and setup. The code uses the values of NDIM, NDIMI,

NDIM2, and NDIM3, which are assigned by a DATA statement, to determine

if the problem specified by the input will fit in the arrays as imen-

sio,.ed. The first two of these parameters, NDIM and NDIM, correspond

to the dimensions of the field arrays, X, etc. The last two, NDIM2 and

NDIM3, correspond to the dimensions of the slit arrays XL, etc. The

last parameter, NDIM3, also corresponds to the dimension of the segment

arrays LBI, etc. Thus NDIM is the maximum value of T that can be used,

while NDIMl is the maximum value r allowed. Also NDIM2 is the maximum

number of points that can be used on a slit or slAV side, and NDIM3 is
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the maximum number of slits and slab sides that can be used. The input

thus must satisfy the following:

IMAX < NDIM

JMAX < NDIMl

ILB2(L) - LBl(L)I + 1 < NDIM2 L - 1, 2, .,NBDY

NBDY < NDIM3

After the initial input parameters are read, the code does some

setup of various intermediate parameters and checks for compatability

with the array dimensions. The value of IDISK is then checked to de-

termine if the solution is to be started from the beginning or if a par-

tially converged solution is to be continued.

Boundary input and construction. If the start is from the beginning,

the point type array LSLIT is initialized to -2000]on the outer rectanj'le

formed by I - I & IMAX and J - 1 & JMAX, and to 0 inside this rectangle.

Next the points on the slits and/or slab sides (if any) are read

from either card images or file 10. Points on slits are placed in the

slit arrays XL, etc., while points on slab sides are placed directly

in the field arrays X and Y. The point type array LSLIT is set to

-(10000 + L) at points on slab sides, where L identifies the particular

segment in the order as input, unless the side is a part of the outer

boundary in which case LSLIT is left at -20000. At the same time, 10 Is

added to the segment type array LTYPE for slab sides on the outer boun-

dary, resultinginreplacing the input values of -il and -12 with -1 and

-2, respectively, in conformance with the usage for slits.

The slit arrays, XL, etc., (if any) are then printed and subroutine

BNDRY is called for the outer boundary. If the outer boundary is not
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input in segments as slab sides, this boundary is either input as a

succession of points proceeding from a specified point completely around

the outer rectangle formed by I = I,IMAX and J = I,JMAX, or a circular

outer boundary is generated internally and placed on this rectangle.

Both of these procedures are performed by this subroutine by calling the

subroutine INFBDY, which either reads a point from a card image or cal-

culates a point on the circle.

Point types. Next the point type array LSLIT is set to the following

values on and adjacent to slits (if any). Here L identifies the partic-

ular slit in the order as input:

-L on slit

IOL + 1 below horizontal slit

IOL + 2 above horizontal slit not adjacent to
slit ends

1OL + 3 : left of vertical slit

IOL + 4 : right of vertical slit

The point type array LSLIT is then set to -10000 for points outside

the computational region, i.e., inside slabs, by sweeping along each

and n line and noting when the computational region is entered or left

across a slab side. The complete point type array then contains the

values indicated in the diagram below:
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10L + 4 10L + 2
• .-L

1OL + 3 10LO+ I

-L -20000

-(10000 + L)

0-i00
*0

' -10000
-20000

Control functions and initial guess. With all of the boundary points

in place and the point type array filled, the code then calls subroutine

C0NTRL to evaluate the control functions on the entire boundary (including

internal boundaries). The subroutine GUESSA is called next to calculate

the control functions and the initial guess for the cartesian coordinates

in the field by interpolation from the values on the boundaries. This

interpolation is done at each point in the field by locating the pair of
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boundary segments facing the point (one or both members may be internal

boundaries) and interpolating between these segments. For the coordinate

values, the distances separating the pair of segments facing the point

in the horizontal and vertical directions are examined and the interpo-

lation is done between the pair with the smaller separation.

Iterative solution. If the solution is to be restarted from a partially

converged result, then all of the above computations are skipped and the

partially converged solution is read from file 10 instead. In either

case the initial array values are printed at this point according to

the input print controls.

Subroutine TRANS is now called to perform the iterative solution.

This subroutine first reads the parameters associated with the attraction

of curvilinear coordinate lines to other curvilinear coordinate lines and/

or points. The species of line being controlled, i.e., or TI, is read

into ATYP, and whether the control is to be attraction or repulsion is

determined by the input parameter ITYP. The number of coordinate lines

and points designated as sources of attraction are read into NLN and NPT,

respectively. Also a common decay factor and a common amplitude multi-

plication factor to be used for all attraction lines and points for this

species can be read into DEC and AMPFAC, respectively.

For each species of control, subroutine RHS is called to read the

attraction line index, or point indices, and the amplitude and decay

factor for each. This subroutine also sums the effects for all such

attraction lines and points and adds this cumulative effect to the

control function at each point in the field in accordance with Eq. (5)

of Part A.
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Subroutine TRANS then reads the parameters associated with attraction

of curvilinear coordinate lines to specified lines and/or points in space

and adds the cumulative effect of all such attraction lines and/or points

to the control functions at each point in the field. This is done in a

similar manner as described above. Subroutine RHSXY reads the cartesian

coordinates of the points on the specified attraction line and those of

the isolated attraction points and calculates the normal to the attrac-

tion line. These qualities are placed in the arrays XPT, YPT, VECI, and

VEC2. The addition to the control functions in this case must be changed

as the iterative solution of x and y proceeds since the control functions

depend on x and y for this type of attraction.

After completing the calculation of the control functions, sub-

routine TRANS reads the parameters that provide for a gradual implemen-

tation of these equations during the iteration, and performs some setup

for the iterative solution.

The field is then swept iteratively until convergence is achieved

or the maximum number of iterations allowed is reached. In each itera-

tion, new values for x and y at points having the point type LSLIT non-

negative are calculated.

First the coordinate derivatives are calculated, and the Jacobian

and other such quantities and coefficients are evaluated. Then the

locally optimum acceleration parameters are calculated if such is elected.

The change in these acceleration parameters between iterations is moni-

tored and the values are frozen when the magnitude of the change falls

below a specified tolerance at all points. (This change between itera-

tions, and the analogous changes in x and y, are calculated by calling

subroutine ERROR). The acceleration parameter is placed in the field
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array WACC. The addition to the control functions from attraction to

specified lines and/or points in the physical region is calculated next,

and then the new values of x and y for the point are calculated.

This procedure is followed for all points in the field, i.e., points

having the point type LSLIT non-negative. For points adjacent to slits

it is necessary to obtain the values on the slit from the slit arrays,

XL, etc., and the calculations are done in that case by calling sub-

routine SLIT.

After each sweep of the field the maximum changes in x and y from

the previous sweep are compared with the input tolerances. If the max-

imum number of iterations allowed by the input is reached before conver-

gence, then the partially converged solution is written on file 10 for

potential restart. If convergence is obtained the solution is written

on file 11.

LINES (Boundary Segments)

The small front-end code LTNES generates a distribution of a speci-

fied number of points on a curve between two specified points. The curve

may be specified to be a straight line, a circular or elliptic arc, a

quadratic with zero E:lope at either end point, or a cubic with the slope

specified at both ends. In any case the point distribution on the curve

may be uniform or exponentially concentrated toward either end. The

input consists of the number of curves to be generated and, for each

curve, the number of points on the curve, the type of curve, the end

points, and the particular quantities to be specified in connection with

each curve. Detailed instructions for input are given below. 4
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The cartesian coordinates of the points generated on each curve

are output in succession on file 10 by a separate unformatted write

statement for each point (WRITE(10) X,Y). Since more than one curve

can be generated in one run, this code can be used to build an entire

boundary composec. of segments of different types. The generation of the

curves and the exponential concentration of points thereon are explained

in the following section.

Generation of Curves

Straight line. Here we have simply

y a + bx

so that with the end points, (xI, yl) and (x2, y2, specified we have

x 2 b Y2

so that

y l0 2  y2x
l

xx 2  1

Y2 - Yl
x2 - x1

Circular arc. For a circular arc of radius r centered at XO, y()

with 8 measured counter-clockwise from the positive x-axis, we have

62



x = 0 + r cos 6

y yo + r sin 9

The end points are defined by inputting the radius r and center of

the arc (xo, yO), together with the angles, 81, and e2, of the end points.

117

(x x 0o)2 (y _ yo)2

a2 + b2 =i

which can be written in terms of the angle 6, measured counter-clockwise

from the positive x-axis, and the angular-dependent radius r(8) as
'*1

x - x 0 + r(O) cos a

Y a YO + r(6) sin o

Then

r(e) - + sin2 a
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The end points are specified by inputting the axes, a and b, the center

(X0 , yO), and the angles of the end points.

b

(xo,-Yo) a

.- x

Quadratic with zero slope at end point. Here we have

y = a + bx + cx2

y = b + 2cx

Then with the end points, (xl, yl) , and (x2, y2), specified together

with the specification of zero slope at end point i (i = I or 2) we have

x x22  a y

which is solved for the coefficients a, b, c.

Cubic. The cubic equation is

y - a + bx + cx 2 + dx 3

y' - b + 2cx + 3dx 2

or
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I x x2 x13 a 1

1 x2 x 22 x23  b = 2

0 2x1  3x1
2  c

0 1 2x2  3x2 2 d

which is solved for the coefficients a, b, c, d.

Exponential Concentration of Points

The exponential distribution of points on the curve of any type is

done by taking

i-[ 1 e-(%(N-n]

x = xI + (x2 - x1) 1 - e _

for concentration near the first end point and

x = xI + (x2 - x)[ - (N- )]

for concentration near the second end point. Here the strength of the

concentration is controlled by the specified decay factor a, and N is

the number of points on the curve.
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CSPLOT (Plot)

The plot code CSPL0T plots the coordinate system generated by the

code WESCOR, having read the coordinate system from file 11 as output

by WESCOR. The input consists of the number of coordinate lines to be

plotted, a designation for skipping lines, the extent of the field to be

plotted, and a factor for using different seating in the horizontal

and vertical directions. This input is detailed below.

The plot is formed by simply connecting the points on a line of

constant curvilinear coordinates in the physical region, i.e., by con-

structing straight lines between each successive pair of points, X(I,J)

and Y(I,J), as one index is held fixed.
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WESCOR Input Instructions

.004su$$ sS1 uS*SS51 sh11 fl111111 :1t$I w11sS5S151555S I$S€I fi$ :gsS: :$I

11O=C
1?OCIIS:SugII szt !S*IIglIIS W E S C 0 R sis!Illllsl 2;flh5Sllll l zl S
130=C

1504
160=C 2-D BOUW4ARY-FITTED COORDINATE SYSTEM CODE
170=C
180=C MISSISSIPPI STATE UNIVERSITY , 1982I"=C
200=C U.S. ARMY ENGINEER WATERWAYS EXPERIMENT STATION
210-C VICKSBURG, MISSISSIPPI
220=C

240=C
25A=C SS*Sl*SS00* SLIT-SLAB CONFIGURATION It$n
260-C 1
270=C IfSt ATTRACTION TO COORDINATE LINES/POINTS AND TO SPACE LINES/POINTS,
80=C 1$ CONTROL FUNCTIONS ALSO INTERPOLATED FROM BOUNDARY POINT DISTRIBUTION,
90-C,30-C *33515l:Sinlg lll~gl~llllgll3l$lSl$ll flS;IfltflISI$$ISlllllll

110C I$fS3S$S INPUT INSTRUCTIONS
320=C I
330-C 15 CARDS(2) : LABEL - FORMAT(IOAS)
340-C S
350-C 8 LABEL - TWO 80 CHARACTER CARDS. (PLANK CARDS IF NO LABEL)
360-C I
370-C Sts CARD : IMAX,JMAtrNBEDY,ITER,ISIT,IBNDRYIDiSk,IhIR,TINTL,
38OzC t FININRER - FORMAT(i111)
390=C I
4004 iMAI, - NUMBER OF Xl POINTS.
410=C I
420=C I JMAX - NuMBER OF ETA POINTS.4304 3
440 C I REDY - TOTAL NUMWER OF SLAB SIDES ArD S.1.7' INTAE FIELD,
450=C 1
460rC 9 ITER - MAXIMUM NUMBER OF ITERATIONS ALLOWED.
470=C I
480C 1 1SLIT - =1 SLAB SIDES OR SLITS READ FROM CARDS.
A?0:C I XY - FORAT('2FI0.O) , ONE POINT PER CARl;.
tO0=C I :2 SLAB SIDES OR SLITS READ FROh FILE 10.
210=C I X,Y - UNFORMATTED , ONE POINT PER IA E,
520:C I
530=C I(90TIE: HORIZONTAL SLITS ARE READ CLOCKISE FROm RIGHT END,)
540:C ( VERTICAL SLITS ARE COUNTER-CLOCKWISE FROM TOP.
S50=C I SLAB SIDES MAY BE READ I EITHER DIRECTION.

570=C I IMDR Y - =0 OUTER BOUNDARY CALCULATED INTERNALLY AS CIRCLE,
580=C I =I OUTER BOUNDARY READ FROM CARDS,
590=C I XY - FORAT(2FI0.0) , ONE POINT PER CARD.
S00=C I:2 OUTER BOUNDARY READ FROh FILE 10.
I0-C I XY - UNFORMATTED t ONE POINT PER IMAGE.

620=C I =-I OUTER BOUNDARY READ IN SEGMENTS AS SLAB SIDES.
630=C 1
e4=C I (NOTE: FOR I;NDRY = 1 OR 2 t OUTER BOUNDARY I REAl CLOCKWISE)
,550=C I FROm POINT (INFXINFETA.
660=C 8 1 'OUTER BOUNDARY' MARS ENTIRE BOUNDARY OF TRANSFORMED
670-C Ii REGION IF NREN-O. IF NREN IS NOT ZERO, THEN OUTER
60c 1 BOUNDARY IS THE TO OF THE TRANSFORMED REGION AND
690C ( INNER BOUNDARY IS THE BOTTOM.
700=C I

"O-c I ILI% - =O DON'T READ OR WRITE SYSTEM FROM OR Om FILE.
2WC 1 =I WRITE SYSTEM ON FILES 10 t 11. DON'T READ Sf$SEM FROM FILE,
"0rC : =2 WRITE SiSTEM ON FiLES 10 & Il . READ SYSTEM FROM FILE 10 FOR RESTART.
740:C I =3 READ SYSTEM FROM FILE 10 FO RESTART. DON'T WRITE SYSTEM ON FILE It.
750-C I
7aO-C 3 f OTf: FILE 10 IS RESTART FILE FER CONTNUAIIOi OF ITERATION.)
'70-C I( FILE Il IS STORACE FILE FOR FINAL SYSTEM.
;90-CS
90xC 1 1WIR - :O DON'T PRINT EACH ITERATION ERROR,
800=C I PRINT EACH ITERATION ERROR.
810=C I
a p0-C I IWIOTL - =0 DON'T PRINY INITIAL GCIES.
830=C I ' PRINT INITIAL GuESs,
850C :wFlr, - N7,0-:ER0 SUPPRESSES PRINT OF F;NA.L ViLUESI.
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860=C

870=C 1 NREN - NON-ZERO USES RE-ENTRANT BOUNDARY Oy LEFT & RIGdT SIDES
960mC I OF TRANSFORMED REGION, WITH OUTER BOUNDARY ON TP
8"--t I AND INNER BOUNDARY Op BOTTOM.

910-C I INNFR BOUNDARY IS READ AS FOLLOWS BEFORE READING OUTER BOUNDARY:
920=C S =1 INNER POUNDARY READ FROM CARDS.
930=C a XY - FORAIT(2F10,) , ONE POINT PER CPRD.
940=C S =2 INNER BOUNDARY READ FROM FILE 10,
M=C I X,Y - UNFORNATTED , ONE IMAGE PER CARD.960C
07O a (NTE: SLITS AND/OR SLABS HAY ALSO BE PRESENT.)
090-4 111 CARDS(NIDY) LBI,L32LB,LTYPE - FORNATt4I5)loooc I
o0o--C I LB1iLB2 - FIRST AND LAST INDICES OF SLAB SIDE OR SLIT ENDS.
1020=C 1 (102 NAY BE LESS ThAN Lb1 FOR SLAB SIDE, INPUT IS FROM LDI TO 12,)
1030=C I
1040-C I LB3 - INDEX OF LINE ON WHICH SLAB SIDE OR SLIT IS LOCATED.lo50c I

1060=C $ LTYPE - SLAB SIDE OR SLIT TfPE (I FCR HORITONTALv 2 FOR VERTICAL,)
1070=C I
1080CC I (NEGATIVE INDICATES SLAB SIDE, FATHER THAN SLIT.)
1090=C I (SUBTRACT 10 FOR OUTER BOUNDARY SEGMENT.
1100=C I (I.E., -11 IS HORIZONTAL OUTER BOUNDARY SEGMENT,)
i110=C 1 ( -12 IS VERTICAL OUTER BOUNDARY SEGMENT.
1120=C I
1130=C I$ CARD RII),R(2),R(3),YINFINAIFINXOINF,YOINFINFXIINFETA
1140-C I - FORMAT(FIOO,215)11 .w-C $

1160=C I R(!) - SOR ACCELERATION PARPMETER.
1170=C I (ZERO VALUE CAUSES 14ARIABLE ACCE.ER-TION FPiRAMETER)
!180=C a (FIELD TO BE CALCULATEI INTERN.,Lf,.1190=C $
I200=c a R(2) - ALLOWABLE X ITEFTION ERROR.
1210=C I
12,L:c a Rt3) - ALLOWABLE Y ITERATION ERROR.
1230=C $
1240=C S YINFIN - RADIUS OF CIRCULAR OUTER IOL I ARY,
1250=C a
Q260=C a AINFIN - ANGLE OF FIRST POINT ON CIRCUL;R OUTER BOUNT'A-fi (DECREES).
1270--C a (COUNTER-CLOCK FROM PSITIVE X-AXIS.
120=C a
1290=c XOINF,YOINF - CENTER OF CIRCULAR OUTER BOUNDARY.
1300-C $
1310-C a NINF - NUMBER OF UNIQUE POINTS Of CIRCULAR OUTER BOUNDARY.
1320-C a
1330=C a IMFXI,INFETA - INDICES OF FIRST POINT ON CIRCULAR OUTER BOUNDARY.1340--C I

1350=C I (NOTE : LAST 7 OF TESE PARAMETERS AF:E IFRELEVANT IF OUTER BOUNDARY IS READ,)
1360=C a
1370=C a. . ..... .... .... .... .... .... ..... ................ ....
13wc a
1390-C I IF BODIES AmB/OR OUTER BOUNDARY ARE READ FROM CARS, SuCH CARDS
1400=C Is FOLLOW NEXT.
1410-C St
1420-C IS SLITS AND/OR SLAB SIDES ARE READ FIRST, THEN Ok.TER BOUNDARY IS REA,.
1430=C a (THESE RULES APPLY FOR READIN FRON FILE 10 AS WELL AS FROm CARDlS.
1440=C U14,50--C I ................. , . ........... . . ........ ... ........ . . .

14602C a
1470-C a; IF NO COORDINATE ATTRACTION IS TO BE USED, F'LLOW ThESE CARDS
1480C U WITH FIVE BLANK CARDS. IF ATTRACTION IS T,' K USEI', USE THE F3LLOWING
1490-"C $3 INPUT RATHER THAN ThE BLANK CARDS:
1500."C is
1510-C IS INPUT FOR COORDINATE SYSTEM CONTROL : USE F.3Uk SETS, ONE FOR
1520-C IS XI-LIME ATTRACTION TO COORDINATE LIN.S F*OINTS, ONE FOR ETA-LIKE ATTRACTION
1530--C IS TO COORDINATE LINES/POINTS, ONE FR X:-LINK ATTR.ACTION K SPACE LINESiPOINTSY
1540=C $I AND ONE FOR ETA-LINE ATTRACTI.N TO S7'AC' LINESFIiTS.
1550C I ANY SET NOT WAKNTED IS REPLACED BY ONE BLA.tK Ch4..
1560=-C It
1570-C aiiiaI $ll11115$1#l#$1151$11 II$$sattt$l i
1580=C If
1590-C It THE FOLLOWING, MRKED WITH I- I. FOR ATTRAC;P Th COORDINATE LINES/POINTS:
1O0=C a$
Iio=C If$ CARD : ATYPtITYPN;.N NF'TIF.CiAPFAC - F3lfM00AA.,,I2,24S,'FIO.O)
1e2=C If
1630-C It ATYP - TYPE OF ATTRACTIOb. (YI FOR XI-L NE ATTFACTION,

.40=-C a# ETA FOR ETA-LINE ATTFACTJOh,) LEFT JUSTIFIED.
165=-C 5*
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1660C of ITYP -ZERO GIVES AT" TION O bith SIDES.
1670=C f NON-ZERO GIVES ,TTRACTION ON UPPER SIDE AND
IoO=C It REPULSION ON LOWER SIDE,
1690C 1#
1700=C S# NLN - NUMBER OF ATTRACTION LINES.
17I:C It
1720=C ft NFT - NUiBER OF ATTRACTION POINTS.
1730=C It
1740=C If [EC - NON-ZERO DEC USES DEC FOR DEC0t FACTOR.
1750=C St
1760C to AN'FAC - NON-ZERO AAPFAC MALTIPLIES ALL AMPLITUDES BY AnPFAC.
1770=C St
178&{ *t1* CAR SNLN' : JLNMILNDLN FO AT(~,1,2FIO,
1790=C to (OHIT IF NLN IS ZERO)
1800=C S1
1810=C if JL - ATTRACTION LINE INDEX.
1820=c to
1830=C It ALN - AMPLITU[ E (NGATIVE REPELSi F.IR L'r AhiACTION.
1840=C It
1850=C I# DLN - IIECAf FACTOR FOR LINE ATTRACTIIN.
1860-c It
1870=C 1*IS CAR[S(NfT, : IFTJPTAPTyFT - F,,6AT2,2F:C.O
19804 ST '(IT IF NFT !S ZERO'
1890=C It
1900-C St TPT,.JPT - ATTRACTION PCIhT I;,iDICEL.
1?10=" 01
101' 1 AFT - ArIPLITUIE (NF;ATIVE RPELS FOR FjI T ATT-ACTI.N.
193Og. It
1940=C If IPT - DECAY FACTOR FOR POINT AT7RACTIOTN.
1950=r IS
1960C 15$$$555 t$$$$$$ S$ $$$$$$$$$ $ $$$$1970=C SS
1980=C $$$ THE F.IOLL04I.G, MAhFEli WITH St 1: FOR ATTRACTION TO SPACE LIMEO/POINTS
190=C 3$
20004 IIS THE FOLLOWING CARDS ARE FOR ATTRACTION TO LINES AND/OR F,INTS
'10104 $$$$ DEFINED Bi XY COORDINATES, IF NLN IS NCT ZERO, THEN N
2020=C Ti11 OF TAE CARDS GIVING NP 1JST APPEAR. EACH OF TRESE CARDS IS
2030=C 111 FOLLO~ir BY 1,' OF THE CARDS GIVING XPT, ETC. IF NPT IS NMT
M404 $$$$ ZFRC, ThEN WT OF THE CARDS GIVING XF'T, ETC. mrjST FOLLOW
2050=C $IS THE LAST GROUP CF THESE CARDS.2 60=C IIS MNY SET NOT WANTED IS REPLACED ?If OE BLANK CARD.
"070=C IS

2080:C I CARD : AIYPITYPNLN,NPT,DECANPFA' - FOROAT(AMl.,215,2F10.O)
2090=c II
21004 II ATYP -T'E Or ATTRACTION. (XI FOR XI-L.INE ATTRACTIONt
2110=C IS ETA FOR ETA-LINE ATTRACTION.) LEFT JUSTIFIED.
2120c $I
2130=C IS ITYP - ZERO GIVES ATTRACTION ON BOTH S;DES.
2140=C IS 4ON-ZERO GIVES ATTRACT'Om ON UPPER SIDE AmIl
2150=C $I REPULSION ON LOWER SIDE.
216040 $1
^170-C S$ NLN - N00Pt ER OF ATTRACTOiv LINFS,
21BO=C IS
21904 I$ NT - NUMER OF A-TRACTION POINTS.
_00=C It" NOT INCLUE'lG POINTS O ATTRCTIO LINES'
22104c IS
2220=C S$ I1FC - MON-ZERO DE' USES DEC FC;A DECAf FCTO.
2230-'C IS
2240=C IS AmPFA( - NON-ZERO AmPFC M;JIT. IES ALL AmPLITr5Ec .Y AmFFACo
225040 I$
2260= ill CRl, NP - FlrMATI5)
227040 IS
2280 $$ Nr - NUMBER OF POINTS ON T-IS ATRACTiON L7.E.
2210= I$
2300C 1M9* CRS kPTrYFTAPTpPTVECJ.,VEC2 - FORkAT7 TFI.,,
2310-C 1
2320-C It xFTiFi - COMDRiNATES OF ATRACTIOt FS-INI O
2330=C 1 POINT ON ATTR,'.CTTC,.. LINE-
25,40: II
2,?5o=c IS ; T - ATTRACTION AMPLITUIE .EC040T.,E REFLS,.
2.60-C IS

2370=C Is ,PT - DECA FACTOR.,
2380=E IS
2300=C It VEClVEC2 - XY COMPONENTS OF UNIT VECTOR NORMAL TO
2400=C I1 4TTRACTION DIRECTION FOR OINT ATTRACTIONi
2410=C is (CALCULAiFI. INTERA,.LY FOR LINE ATTRACTION.)
2420=C IS
430=C I

2440=C I .......................... .......................................
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24o0=C I0$ THE LA.ST COORDINATE SfS'En CONTOi CAP!, IS T FtNJ04,IING C,,F;i
2i7OC 3
2480=C t03 CARD: IFA(C,IRITtFAE - FORrM215I,F:O.O,
2490=C t
2,00C (CAN , USED TO AID CONVERGEN BY EB1 N,EF*RGING FIELiD
210:C : (WITH LiSS ATTRACTION FIRST AND USING THIS RE:3ULT
:520rC I (AS ThE INITIAL GUESS FOR STRONCER, ATTRACTION.
2530=C (BLANK CARD MUST BE INPUT IT TIS FEATURE IS NOT UED.)
2540=C $ 'STANTARI) IS TO NOT USE THIS FEATURE , i, JT ITS USE KAY)
2550C 1 (BE NECESSARY WITH STRONG ATTRACTION.
260=c 1
270-C t JAC -NUhBER OF STEFS IN ADDITION OF INHOnOCENEOUS TERM,
25B0=C 1 DOUILES IHOMOGENEOUS TERM AT EACH STEP.
2590=C 4
2600--C (ZERO CONVERGES WITH FULL ATTRACTION.
2610=C (1.0 CONVERGES WITH NO ATTRACTION FIRST, THEN
",20-- .VITH FULL ATTRACTION, 2.0 CONVERGES W:TH NO
2o30C 8 ATRACTION FIRST, THEN WITH HALF, THEN WITH FiLl,)
2640=C (INCREASE NUMBER OF STEFS IF DIVERCENCE OCCURS.26504 9
2660C II - NON-ZERO VA.UE CAUSES INHOMOCENEOdS TERM TO BE PRINTED,
2670=C
2o80C 3 EFAC -MULTTPLE OF CONVERGENCE CRITE.:ION TO BE USED FOR
2690=C 1 INTERMEDIATE CONVERGENCE BETWEEN ADDITIONS OF
27V-- INHOMOGENEOUS TERN, (TYPICALLY 10,0 1
2710=C 1272(0C $ 33$31111 u1 33IIU33333$3:3$:33$u333$1n3333!$$$3:g::I33$11$nIn:3$1

2730=C t
2740-C 8 MASS STORAGE F:LES
750=C
2760C 1 RESTART FILE - FILE 10:
1170=C
2780C (10) RXI,RETA
2790'C t 110) X,Y,LSLITrLAPFLyIMAX,.JMAX
2800C $ '10) NBDYrNhBrLB f,L,"?LI3,LT'PE.LFT,XL.X;,YL ,Yd,2SIO--C 3NDI , N1IM ,NtI M2, DInt', ~CC2810=C

2830=C 9 CORDINATE SYSTEM STOFAGE FiLf - FiLE 1'
2840-C
2850C (11) LAEL.InAXJMAX
2960C s .11) (( LSL IT( ',J ),I=', :,IAX :,.JJ
2970C (11) (( X( I .J ),I:1,I MAX ),!Jr :,PJMAX
2880-C I I I ) ( Yt If,. )vI-'fIAX fj=, 1,.1AX;
2390C 3 -1) NBlYNUBfLB; ,LY2"tLTYF,vLF IAl,.0,l! ,YU,
2?00-C 1DI, rIM1,NI'I2; OIT:
291C-C t
2920=C 3$11l hI*:szu;3tflu3lsl;)l 3115111I:$g: zL IzIII$1111I3:33sg
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LINES Input Instructions

.10={;
12o=CUllltt:Is::*fl:tsEs1ttS L I 0 E S ;:sszTszx :zzszug~gs
130C.+O-Cggfl;$glflh*nhx sgugz ggEms,,Is):mzz1zflu;*lgg1gHg

160C IOUNDARY SEGMENT CODE FOR INPUT TO WESCOR
170=C
i90=C MISSISSIPPI STATE UNIVERSITY . 182
1"-C
M0O=C U.S.ARNY ENCINEER WATERWAYS EXPERIMENT STATION
210C VICKS"tJRC, MISSISSIPPI

240=C23O=CIf lhSStU SIIIt$1SS$IflS:$$2$gf:lSI$ U$$ gS12Z1$$$g11zgggi$Ig fl

M-CUS$ POINTS ON WOUNTARY SEGMENT ISS
260C27o=Cs $$s5155:555$$$$s1t55S $$$IIfIl:*SI$$sII $UsS ISIIIgIgS$S

29 0=Ck INPUT:
300C
310:CISCAR [ : NLINES - FORMAT(15)
320=C
330 C NLINES - TOTAL NUMBER OF LTNES.
340=C
350--GUCARDS4NLIMES) NITYP,DI,'2,13DI,'5,lDt, FORFAT(211,7FIO.O
360=C
370-C 0 -NUMBER OF POINTS O LINE.
380=C
390=C ITYF -TYPE OF LINE
4004 0 STRAICHT.
4104C i CIRCULAR ARC.
4204C 2 ELLIPTIC ARC.
'30=C : CUTIC.
440=C 4 QARATIC WITH ZERfE SLOE AT FIRST POINT.
45o=C 5 GJAPRATIC WITH ZERO SLOPE AT SECOOD POINT.

470=C [I.D- AS FOLLDWS - ITEMS NOT r!TEII ARE IRRELEVANT)480-C
490-C ITYP-0 : Di -X OF FIRST POINT.
500=C 112 - Y OF FIRST POINT.
510=C 13 - X OF SECOD POINT.
520=C D4 - f OF SECOND POINT.
530=C
540=C ITYPl : Il - ANGLE OF FIRST POINT (DEGREES, COUNTER-CLOCK FROM POSITIVE X-AXIS)
550=C D2 - ANGLE OF SECOND POINT (WIEREES, NOUNTER-CLOCK FROM POSITIVE X-AXIS)
51,0C D3 - X OF CIRCLE CENTER.
570=C D4 - Y OF CIRCLE CENTER.
580-C I[i - CIRCLE RADIUS.

0W ITYP2 : Ii - AKGLE OF FIRST POINT. (DEGREES, C'UNTER-CLOrr. FRO P'OSITIVE X-AXIS)
ol0-C D2 - ANGLE OF SECOND POINT. (DEGREES, COUNTER-Ci-uK FkOM POSITIVE X-AXIS)
020-C D3 - X OF ELLIPSE CENTER.
630=C D4 - f OF ELLIPSE CENTER.
640=C [S - X-AXIS LENGTH OF E.IPSE.
050--C Dt - Y-AXIS LENGTH OF ELLIPSE.
060=C
670=C ITYP=3 : Di-Oi SAME AS ITYP=O
o80-( I - SLOPE AT FIRST POINT. (IEGREES, COUNTER-CLOCK FROM POSITIVE X-AXIS)1)90=C B6 - SLOPE AT SECOND POINT. IDEGREES, COUNTER<-CLOCKI FROM POSITIVE X-AkIS) '
700=C
710=C ITYP=4 : D-4 SAME AS ITYF=O
7204C
730C ITYP=5 : 0,-D4 SAME AS ITYF-O
740--C
"'0:C BE - EXPONENTIAL VE3OENTRATIOm FACTOR.
760-C 0,0 FOR EUAL SPACING ON LINE.
770=C NEGATIVE FOR CONCEOTRATIN NEAR F:RST POINT,
780=C POSITIV, FOR CONCENTATION NFAR SECOmil PCINT.790-C
800-CIflI$a$IStg~ISiS$ fSSII:,t$$ Yu1tt :ut til U *ref t Ut :
810-C
920=C MASS STORAGE FILE
930=C
840=C OUTPUT - FTLE 10 : MITE 10', XI), Y(I)
M=C X I Y POINTS OF ECH L>..4E' #NCLJ!Ill -1'.
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CSPLOT Input Instructions

11O:Cs
2O~C~flS3:*s~s:iuw~gRC S F L10 T 1 ugzs~iluf~gu~

130=Ct

'60=C COWRINATE S(STEK PLOT CODE -MSISIfI S'TA', Ut~YRIh.18

180=C U.S. ARAY EriGIHEE;. WTERWArSl EifPRI~coT STATION
190-C VICK'3PUfi~ MIS1SSIFF1
200=Cs

240=C I
250--C $0$0I INPUT INSTRJCTIONS
.60=C t
270=C £32 CARD :NUMEjR N RI 1SW V!;P *Im F'AT( 4
290=C I
2?0=C * NUtIBR - NIMBER Of' ETArC6,4TA'NT L74ES bF5,lREi. FfR PLOT.
.00c SbffAtLT I.: ALL L;NF
3I0O=C HiFRFW

s2~ O UNKI1 NUMBER OF )!=C3N5TAmT LINES IEESIRI ~ '
330=C 1 (DEFAULT IS PLL LIN~ES)
.)40=C I

-5= ISii IN ShUF FARAIETER FOR X140KNTAN~T C30R['IATE LINES.
-60- * I1 PLOTS iVERY LIOEP 2 PLOTS EvE"! SECC.I LINEY ETC..
370--C I (DIEFAULT IS E:ERa' LINE)
380=c t
390=C I ISKIP2 - SKIF P'AA~ETEk FOR ETA=CONSTAPT CLOINiELNS
+0=C s (SEE IhKIPI)
410:-c 1

42O=C Sit CARD 51~ rE 11: .1 JV2 - FDRAVi,(TI,!
41kC t
440--C t Ni h1DCES OF PLOT F1EL0 BOUNDARY.

;50=c 1(T IS XT, j IS ETA. IFFAULT IS. EONE F:ELL)'

470=C IS$ CARD' : XYRr F RMAT(F!O,0,
480=C t
490=C I KVRAT - RATIO OF PL~OTTED' X TO Y LENGT4. (1.0-

,?=~C I
3OWC $99999 COOF.1IATE ESEiIS RFAL. UrFO~ TEI FROl lx'I 10 AS
SWOC Wttt WITTEP V~ TmE CODIE [SCOP
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LINES Sample Runstream #1

!1j=1P~~wF1r = ILE YDr=TRP TEXT=
-,= 'CATALDCFILE ThAPSNLI NS ID iRF:99?.',

'ODELETE i ONIAYQ.
180=-EXII.
!0=EIFLEW ,DA=8IHARY.

210= 5
:20= 33 0 0.0 0.0 24. 0.1)

1w 0 0.0 -.)3 0.1 ,.
'40= 25 0.c1 -0.3 24.3? -0.91
250= 2 0 0.0 -013 6.0 0.0
1:10= Zvi 0 24.39 -0.?1 24.3? 0.0
270=80k&
.80=IEDF

WESCOR Sample Runstream #1

1!10=JO3,Tz6G.
i 30ACQUI RE DNFT 19PIWff:THfrPSON I NE S4I ID-, If I R ..
14=CURo-l*YD=N6SN~DtD- O4 G
150=LDRvDW=1ARY.
'o0-bISlPSEr1*FT11 iSDs=F1LE 'ID= vDLC41 ,Tth,1iE)rt

,7= 'AA G IEPTW OOD t= R=9.
180zDEL.E7EPDN9-FT1O.
190 DETE iD#41 AR(Y.
00 rEA1.

110=DELE1EN4710.

240 JOHNSOM FLUA(
250=33 X 25COORDItiATE S(STEm

2r 3 2S 5 100 2 1 1 1 1 0

280n 1 9 z-
"90= 9 33 -1
360 1 25 1 -1..
310 1 25 33 -i2
.10-1.8 0.0001 0-000k

3"0=

390=Sior

CSPLOT Sample Runstreamn

12043,)
130=AC0U1REDN4T10,flJM IOPSOt4CORDO, 1D-, DC=T ,UQ
I 40-AM8IEtuIOARY P[q:TH PSONCSPLOT8, !D=in iDF1TRi 1.
150r-LYAM B:gqEALIB YDNARIY,

V ,0= 'CATAiG FILE THOWLS07I DL0l P P999.'.
180-DtLETEdhNOVT10.
I9OzELETE 9M=BI MARY.
20=EXIT,
'10-IhELETE 9D#N-fT 10.

220-DELETE ,bN4INAkf.

24a 0 0 1 1
:Soz; 0 0 0 0

70=-SEDR
28~SEIW73



LINES Sample Runstream #2

1204J0B,
130:ACGUIREy Df4INRY PPDNzTHOiF SDAI HERr ,I DzMM i [F'T RIJ(
140=LJ.*OFN4ARY,
l504--ISPOSEDN=FTOSNFILEiD 4bfCSTvDF=T~tTXTt
1 60= 'CATALDC.FLETh0IPS0LINESI I ni,1:99'
170=DELETEPWIi8NARY.
1804X11.
10:DELETEDNOBiARY,
2004IECR
210= 15
220:O 25 0 15.0 0.0 5.91 0.0 0.0 0.0 -0.08
230z 9 0 5.91 0.0 4.1 0.68 0.0 0.0 0.2
240= 3 0 4.1 0.68 3.9 0.68 0.0) 0.0 0.0
250= 9 0 3.9 0.68 2.29 0.0 0.0 0.0 -0.2
260= 7 0 2.9 0.0 0.0O 0.0 0.0 0.0 0.0
270= 2- o . 0.0 0.0 1.a3 0.0 0.0 0.0
:go0 '1 0 0.0 1.63 5.91 1.6 0.0 0.0 0.0
0- 29 0 5.'?1 1.63 15J.0 1.66 0.0 0.0 0.04
100= 7 0 15.0 1.63 15.0 1.25 0.0 0.0 0.0
710= 5 3 15.0 1.215 15J.25 0.9% -57.0 135.0 0.0
320= 5 0 15.25 0.96 15.8 0.43 0.0 0.0 0.0
330 9 0 15.8 0.43 15,63 0.23 0.0 0.0 0.0

34= 0 15.63 0.2,3 15.25 0.58 0.0 0.0 0.0
W5 5 3 15.25 0.58 15 .0 0.5 13t.0 51.0 0.0
oO0 9 0 15.0 0.5 15.0 0.0 0-0 0.0 0.0

370 SEaR
380=SEOF
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FLUX-CORRECTED TRANSPORT IN AN EXPONENTIALLY
STRETCHED GRID

Richard A. Schmalz, Jr.
U. S. Army Engineer Waterways Experiment Station

P. 0. Box 631, Vicksburg, Mississippi 39180

ABSTRACT. The transport of a passive constituent in a tidal
(oscillatory) flow regime is approximated using a Flux-Corrected Trans-
port (FCT) technique over an exponentially stretched grid. The FCT
technique consists of a nonlinear average of the results obtained from
two schemes: a lower order in space nonoscillatory scheme, and a higher
order in space scheme. The FCT eLhud studied in this research employed
a forward time upwind space (FTUS) scheme as the lower order non-
uscillaLury sclhciie and a forward Lime ceiiLured space (FTCS) Scheme as tie
higher order scheme. Both schemes were implemented through an Alternat-
ing Direction implicit (ADI) metLhod employing the Thomas algorithm for
matrix inversion.

Numerical results are obtained on a 6785 cell exponentially stretched
grid employed to represent circulation in Mississippi Sound for the FTUS,
FTCS, and FCT schemes. Comparison of these results demonstrates the mag-
nitude of the differences for constituent transport obtained from these
alternate numerical approaches on a real world problem size computational
grid.

1. Introduction. The transport of a passive constituent (salinity)
in a tidal (oscillatory) flow regime is considered using a Flux-Corrected
Transport (FCT) technique in an exponentially stretched grid. The gov-
erning transport equation is first transformed using a C1  piecewise
exponential transformation. The development of the FCT approach for
approximating the transformed equation is next presented. The FCT tech-
nique consists of a nonlinear average of the results obtained from two
schemes: a lower order in space nonoscillatory scheme, and a higher
order in space scheme. The FCT method studied in this research employs
a forward time upwind space (FTUS) scheme as the lower order non-
oscillatory scheme and a forward time centered space (FTCS) scheme as
the higher order scheme. The implementation of these schemes through an
Alternating Direction Implicit (ADI) method is then presented followed
by a discussion of the limiting process within FCT.

The ADI multioperational FCT has been incorporated as a subroutine
within the Waterways Experiment Station Implicit Flooding Model (WIFM).
The revised model will be applied to Mississippi Sound and adjacent waters
to study circulation and salinity patterns. Global effects are studied
on a 6785 cell exponentially stretched grid. Numerical results for a
sharp front problem over this global grid are presented for the FTUS,
FTCS, and FCT schemes employing three different limiters. Results are
compared to assess the magnitude of the differences on a real world
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problem size computational grid. Conclusions and an outline for future
work are finally presented.

2. TRANSPORT EQUATIONS IN CARTESIAN AND TRANSFORMED COORDINATES.
For tidal flow problems the following depth integrated form of the trans-
port equation is initially considered.

(hs)~ + (hus) + (hvs)y =[&(s) + [.iy(s)] (1)

where
h water depth
s E constituent concentration
x - x coordinaLe direction
y y coordinate direction
u H velocity cUmponenL in the x direction
v = velocity component in the y direction
Kx E effective dispersion coefficient in the x direction
KY effective dispersion coefficient in the y direction

( )r /3r for arbitrary variable r
r

The following exponential transformation has been considered by
Wanstrath [1] and used by Butler in WIFM [2]. Consider an arbitrary
variable x mapped or tzanaformed into a . The transformation is
carried out in a piecewise fashion by first partitioning x space as
follows

ixi i = i, N (2)

where L lower partition point for region i in x space

i
xu = upper partition point for region i in x space

N number of regions in the partition

Within each region of the partition the following transformation is
considered.

x = ai + bia x i (3)

where ai ' i' ci and a are determined such that

L u 0  L u u L( iAu,n\A n n I nu > n (4a)

i i

78

78

i I I IV



u L
xI x L i= 2...N (4b)

dx dxL i- 2....8 (4c)

From Equations 4b and 4c, the transformation is C1

Normally one specifies: xL , i - 1,.... N N the partition
points for the N regions, and dx/daI L - the...N

I idx/dI1 u , the rate of stretching at the partition points for the

.NN regions. A time sharing code MAPIT C3] has been developed to compute

n I , a, Ibi I ci, dx/dIX , i - 1,...N . The computed rate

of stretching dx/dociI is not exactly equal to the specified

dx/d cxU X U - 1,...N • However, the difference is usually negligi-

ble. Special options in the code allow the consideration of double
regions; i.e., computations are performed simultaneously for two adjacent
regions.

For the two-dimensional depth integrated transport equation, each
coordinate is transformed separately; i.e., x -+ a 1 and y a 2 Thus,
we obtain

£ i
xm a + b 1CI x C lxX 1 1, N

(5a)

i .c 2  U)L u Mya 2  2b2i Yi i-, M

(5b)

a2 (mL AQ2'm iA 2)

Let p dx/dl and dy/d then for an arbitrary variable Pobtain: 22

(P) x (P)y (6)

1 tt,
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Thus we may transform the depth integrated transport equation from x - y
to a1 - 2 space as follows:

+ hus)+ I + (hvs)a2  L 'hK] 1 hK2 :2] (7)

This equation is the subject of numerical approximation. For convection
much larger than diffusion as is the case in coastal flow regimes, the
equation's character becomes predominantly hyperbolic making numerical
approximation difficult.

3. FCT APPROACH. The sharp front problem has traditionally been
employed to characterize the properties of finite difference approxima-
tions to the transport equation. Results of finite difference approxima-
tions for the sharp front problem fall into two general categories.
Category I approximations produce severe oscillatory behavior for prac-
tical grid spacing but maintain the shape of the front. Category II
approximations exhibit positively nonoscillatory solutions at the expense
of frontal smearing. The Flux-Corrected Transport approach as developed
by Boris and Book [41 and reformatted by Zalesak [5] attempts to obtain
Lhe besL features fruii buLh CaLeguries; iAUnLAly, a noLIuscillatory solulon
to the sharp front problem with limited frontal smearing. In order to
accomplish this, two schemes, one from each category, are considered.
The schemes are written in the following flux format.

h klS I =h k S I a _lF 1/, FI
n,m n,m n,m n,m i/2,m&Y Yn n n-i/2,m

(8)

+ FI F,m-/2)n,m+1/2

such that t = kit , x =E (pl1iAU1 V y - g (P2)iAa2

where Sk  = concentration at location (n,m) at time level kn'M

h k water depth at location (n,m) at time level k
n,m

AQ (P E x space step at m
m

, A2(V2)  E y space step at n

I E General scheme index, which we set to H or L to
* designate the solution or flux at time level k+l

Ifor the Category I or Category II scheme, respectively
F n+i/2,m+1/2 Fluxes through the appropriate cell faces of cell
,/ (n,m). Their form is dependent upon the FD scheme

employed. H designates the higher order space fluxes; .
while L designates the lower order space fluxes
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Note that the difference between the higher and lower order schemes may
be written as follows:

( R L 
hk+1 -1

+ An,m+ 1 2  - A n,m -!2)

where anti-diffusive fluxes are given by:

A F H ~ FL (0
n+l/2,m+/2 n+l/2,m+1/2 - n/2,m+/2 (10)

These anti-diffusive fluxes are next limited, such that

Ac = A
n+/2,m+1/2 n+i/2,m+i1/2 n+/2,m+1/2 n+i/2,m+/2 1 (11)

The crucial step in the Flux-Corrected Transport process is the deter-
mination of the limiting factors, Cn+l/2,m+l/2 , which is deferred to
a subsequent section. -

Finally the updated FCT solution is determined as follows:
[ hk1-1 Anm (-A

k+I = SL - Aal(pl)AI- c - Ac
n,m n,m m 2V)nnmI (n+i/2,m n-I/2,m

nm+/2 ,m-l/2)

Note that if C 0oc - C k+l SL and for C
n+1/2,m n,m+1/2 , Sn,m n,m n+i/2,m

1.0 C sk+l sH1.0 = Cn,m4-l/2 , SnUs
nm n,m

k+l

Since, in general, 0 < C< 1 , Sn is bounded by
L Cn+1/2,fr1 1/2 n ,m

both s and s .
nm nm

4. FLUX-CORRECTED TRANSPORT IN A MULTIOPERATIONAL FORMAT. The
transformed transport equation of Equation 7 is the subject of numerical

approximation. A space staggered grid setup as shown in Figure 1 is

employed. The datum convention is as shown in Figure 2.

Let us introduce the following notation as a prelude to the approxi-

mations. Define for an arbitrary variable Fk where t = k~t
y nAy, x- mAx nm

6k(F k  P- k+1/2 - Fk (13a)
t( n,m) n,m n,m
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m 1.. .4 *§,, .awl,

*'{F - *F1 
l

-F
k

(Jb

-K,

Figure 1. Space staggered finite difference grid
in transformed coordinates

6 1k(Fk. ) . F -~ _nFm (13b)
ta m n,m2 n,m-2 1)

6 (Fkm) Fk - Fk %13c)
C 2n,m/ nl+1/2 nm-1/2

(Fk) - F Fk (13d)
01-2 ma n+i2,m nm-1/2,m

F = (F 1 /2 + n am-1/2) (13e)n,m 2

a2  Fk F k
2 n+1/2 m +  n-1/2,m ('T .... (13f)
F 2n,m
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Figure 2. Datum convention employed within the space
staggered grid system
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and the following upwind difference operations dependent upon an arbi-
trary auxiliary field variable, fk .

n,m

F f 0 (14a)k n,m-1/2 n,m <

F 1  Fk fk <0
n 'm+1/2 n,m

F kf < >0

fk n-1/2,m n,m -
f k  

(14b)
F 2  Fk fk <0

n+i/2,m n,m

Within the FCT approach, two solution schemes are considered. The
standard Crank-Nicolson and their multioperational counterpart are pre-
sented in turn for the Category I FTCS and Category II FTUS schemes.

5. FTCS CATEGORY I SCHEME. The following finite difference equa-
tion is considered as an approximation to the transformed transport
equation:

k t tl = k+1 k1
6 t'(hs + 2AaI( I) a (u + h u

m

At (!?+% +1vk+l 2 k 

+ 2Aa2 (j2 ) n 6  +

Sk+l ka a 6 
At 1 (1) (15)

2a 01 64s)

1 m m
m

6 k+At -"hkhl + l '2s k l

At 6 h k+ a 22(Aa2)
2 ( 2  '2 Lh =2  (112) ; 4

nn

8 2 (s)]m
2  (I2)
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The solution of the above semi-implicit difference scheme requires the
inversion of a large unbanded matrix. In order to reduce computational
effort, the following ADI multioperational difference equations are used.

The approximations for the a.-X-Sweep are given as follows:

At 6 ____ _
' I

k a hk+1/2 k+l/2 k+l/2
6 t(ha) + 2au1 0~1  \h 8a

At 6 CL 61C (S)k+1/2
At I --k+1/2 Kk+l/ 2  I

2Ac2(0 1 ) a1 (Uim

m (16a)

At hkskk

2(p 2) Aa2  a2
n

at a2 !4 (k 
2 (5n 0  at (n,m)

The approximations for the a -Y-Sweep are as follows:
2

Ati/ 6 22
6 +12 (h)+ a (h kl 8 k+l vk+)

t  (ha) + 2Aa2( 2 )
n

at 6 +  6 (a k2)6 (a
A2 h+lKk+l 2 -b

2At 2 a 2 ('Ad22(Ui2) 2n; in (16b) ,

!+ At iOl (k:I/2 k~l12 uk+ll2);

+2Aall • s :)

A a1  1 ) t- -. '

I k/2 hk+l/2 Kk+l/2
m1 2AkI(/2 al (V/2 = 0 at (n,m) .
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The Thomas algorithm may be used to invert the tridiagonal matrices in
each sweep with minimal computational effort.

6. FTUS CATEGORY II SCHEME. The following finite difference equa-
tion is considered as an approximation to the transformed transport
equation:

ktl u+l k Sl uk

6tk(hs) + 2 A6 + u

m

( i2 vk+l a2 vk
+ At 6 - k +l vk+l + "- 2 vkl2 A12 (IA2 ) 6a 2  2hsv

n

Lk + 6L (ak+l a1 6 l(k 1
At 1 k+l 1 + i k 1(17)

2(Aa1 ) 2(0l) a C 1 (1I) m  OL ( I)(

F 6u(k+l)

At 6 +1 Kk+l

2(Aa 2 ) 2 (p 2 ) U2  a 2 ( 2)n
n

2 6a2 (s)]

+"h 2 ( 2) - 0 at (nm)

n

To affect the solution of this scheme again the inversion of an
unbanded matrix is required. To reduce computational effort, the
following ADI multioperational difference equations are utilised.
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CL1xsweep-

At L0 1 -j +1/2 TfiW/2 k+1 2/
6 (he) + PA1(A)

m

At ..C+/ Kk+1/2 2

2Am 2(OVA1) m(18a)

2 (V~2) ACa2  a2
n

At 6 a a 1 6 a(8)

L I! - -0 at (n,m)

- Ao 2 l a2 612)
2"12 612n

Ca2-Y Sweep:

k+1/2 At 6O (ac v k1

k4-1/2 2 1 k+l

6t (hs) + -- 2) ~ S

At 6 a~ k+ Q2 6 a(s)

h .1
26L22 -- 2) (18b)

At k+1/2

At 
(8k1I*912)

a 1 Ktc"2 2 s 0 at (11,3)

2A61 6i1
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The standard Crank-Nicolson equations are assumed to be contained
within their corresponding multioperational differenae equalions. For
the linear case obtained for (02) - 01)- 1, . v
and h constant in space and time, the iniermediate time level may be
eliminated in the multioperational approach and. the total difference
equation obtained equals the standard difference equation plus some
higher order in time factorization terms. The total difference equation
is also consistent with the lihear transport equation..* For the nonlinear
case considered, it is not possible to eliminate the constituent inter-
mediate time level. Thus the exact form of the factorization terms may
not be determined. However, their numerical effect is small and
may be tested in the following manner.

Consider the standard Crank-Nicoison approximations,

N(CN , m] where I - H for FTCS, and I - L for FTUS.

Similarly, denote the corresponding multioperational ADI approximations,

,sk] ,where I H for FTCS and L for FTUS., iL" In,m n,mj

First compute, implicitly,

- I slsI k=I - H and L (19)

then compute, explicitly,

-Nt " rc s ) ,9 k "-l and L- (20) i
n,m Ln n.mJIICNC, k+l I H and\ L (20)

Compare kSD) and ksCN) for I = H and L . Numerical tests
(AIn,m CNn,m

confirm that the two solutions are practically identical, thus

I IIIs k+Ili k+l k+l
-n,m nm n,m

The standard Crank-Nicolson equations may be written in the flux form of
Equation 8; thus they by their nature are mass conservative. Thus the
multioperational schemes are also mass conservative. To implement FCT,

k+l are computed, then k+( ] is employed to computeSAD On CI [S.1)

the fluxes Fn+/2,m+/2 shown in Equation 8. Computations outlined in

Equations 9-11 are next performed. In Equation 12, SL DI
nI
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7. FLUX-CORRECTED TRANSPORT LIMITERS. The crucial step in the FCT
method is the limiting of the anti-diffusive fluxes; e.g., the
determination of 'Cn+/2,m+/2 in Equation 11. Zalesak employs the

following method [5]. In hat follows, S L Sk+l L

n,m - ( ADI n,m
The anti-diffusive fluxes are first screened as follows:

An+1/2,m O if An+i/2,m(S+l,m Sn,m)

and either A i/ 2 ,m(S<+2 ,m- sL+lm) 0 (21a)

or An+l/2,m(SL,m- sLm) O

Anml/2 ,0 if An,+ 1 1 2(S,m+l n,m o

and either An, L2 (SL, 2 - SLml)< L (21b)

or An, l/ 2 (S _- SL,m l)< 0

Cell max.uum and minimum values are computed.

Sa -= max(s ,S , sb' - min(SkI ,SL (22a)
n,m \ nm nm/ nm \nmn,m/

simax = max 15a 5a Sa a' a (22b)
n,m n-l,m' n,m' n+l,m' n,m-l' n,m+l(

S il.mnI S 2c
n,m (Sn-l,m' n,m Ds 'n ,+ , 'Snl,m--"s an,m+l/)

+ Next the sum of all anti-diffusive fluxes into and out of cell (nm),
n and P respectively, are determined.n,m U~'i

0+ max -1 mJ.i(OA ,+fp+M = (OAn1/2,m) / l(,nl2,m) + max(OAn,m-1/2) '
n,m n ~- (23) I

min(O'A ) I
n ,m+1/2

Pnm = max(OAnl/ 2 m)-min(OAn-ll 2 ,m) + max(OAn m+1/ (24)

- min(O,A n5 1i/2)

The maximum allowable mass into cell (nm), + , such that
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sk+l < S max and the maximum allowable mass out of cell (n,m), Q-
n,m -n,m ntis

such that Sk l > Sm in  are computed as follows:
n,m - n,m

st ./mxS.[) AC k+11 (25)Qn,m \n,m - $nA2 &Q ~

S_(qL rain k+l1
OnQu 1 nm n,m/) [(Il) mAa 10(2) n 2hn,,J (26)

The following ratios are next calculated for use in determining the
limiting coefficients.

inin +
e I - 1 n,m/"n,m) Pn,m >0(27)

nmm

R n - (28)

n~m

The limiting coefficients are then given by

(1 + -cm= Imimn ( +lm' nm An+l/2,m 0 (29)

C;..12, - (29)

~minK, R~i A
n n~~m) n+l/2,,

n,m'+ m, n,m+l/2
C.n~+ n~/ (30)

The author has considered two alternative limiters. In alternative
one, Equation 22 is replaced with the following expressions

5max max k sk k k (22a)'
nm I n-l~m' nm'n+im'n,m-l n,m+l}

ta(in ( Sn m k k l s ) (22b)'n,m (1- ,m Sn,m'Sn+l,m'Sn 'm-lSn,m+l)
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This alternative is designated as a mixed time level limiter, since

Sm ax  and Smin  depend only on time level k values, while Q+ and
fim n'm
Q- depend upon time level k+l values of the lower order scheme. To
obtain the second alternative limiter dependent only on previous time
level k , employ Equation 22' and consider the following relations for
Q4 and Q- :

Q+ max _k () UAQhk+11 (25)'
n,m (nm nm2

Qnm(w ,m n,m[lm l 2 n 2 h n,m(

8. APPLICATION TO MISSISSIPPI SOUND. The Flux-Correcced Transport
algorithm was incorporated as a group of subroutines in the Waterways
Implicit Flooding Model (WIFM). DensiLy coupling was not considered.
Since the Mississippi Sound Project is concerned only with fixed boundary
problems, the flooding routine was removed from WIFM. The resulting
hydrodynamic-salinity code enables the treatment of the general nonlinear
problem on a variably stretched grid. It is this problem which is the
focus of the Mississippi Sound Numerical Investigation.

An exponentially stretched grid has been developed as shown in Fig-
ure 3 to describe global circulation and horizontal salinity variation.
The grid employs 6785 computational cells with a minimum spatial resolu-
tion of approximately 4000 feet corresponding to areas within the passes
between the barrier islands. Maximum grid spacing is achieved on the
bottom and right hand side of the grid. This spacing of 15' latitude
and longitude enables the grid to link directly to a 15' latitude and
longitude grid employed to compute Gulf of Mexico tidal variations. The
flexibility of the exponential transformation to provide areas of high
resolution and spacing compatible with coarser grids for boundary driving
Is demonstrated.

In order to describe the dispersion mechanics within Mississippi
Sound the following relations will be considered [6].

K 1 =D rgulh R 1(31a)

K DS + R (31b)

where
a 2 2

K K K dispersion coefficients (ft /sec)
D dimensionless constant dependent upon the local flow
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conditions [(5.93 - 20.2) in the direction of flow
0.23 in the direction perpendicular to flow]

C Chezy coefficient (ftl72 /sec)
g gravity (ft/sec

2)
h E water depth (ft)

u, v S velocity components in the x-aI and Y-Q2 directions,

OL 1 a 2 respectively (ft/sec) 2R , R additional dispersion effects (ft /sec)

9. SHARP FRONT PROBLEM. The following sharp front problem was
employed to test the FCT method for application to Mississippi Sound.

The hydrodynamic problem setup employed initial water surface eleva-
tions set to zero over the computational domain, flow inputs of 4 ft2/sec
per unit flow width at cells (97,3) and (2,44), and a ramp function of
1/6' per time step as the seaward boundary elevation condition.

The salinity problem setup employed initial zero levels over the
entire computational region except in a block of ten cells as shown
below and indicated as the shaded area in Figure 3.

n € (101,105)
0.0

m 0 (54,55)S°0 (32)

nm
n E (101,105)

10.0
m "(54,55)

Salinity levels were maintained at zero at the two flow input locations.
0 10. an 2l 2In the dispersion relations, D 10.0 and R 0.0 ft /sec.

A 5 time step (5T) simulation was performed for several numerical
schemes employing a time step length of 6 minutes resulting in a maximum
gravity wave speed Courant number of 4 within Mississippi Sound.

In order to characterize the transport aspects of these simulations
the following dimensionless numbers are computed.

Ik
k At

Cr k +/ 3a
m

Ik
k p~l/2 ,mjAt

CrYn,m (02)n A 2  (33b)
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1 'I

Pekk M nm+1/2 1 ml (34a)

n,m Ka1k
n , +1/2

kk

vk (Ii ) Aa

n+/2,m 2 22

Per k x-O1  cell (n,m) eCuat rsot number at time k

Fe I

nm

Pe k  Y- cell (n,m) PCuat rst number at t m e k

Ynm Y-a2
wh er sac ncemn

(Pr X-01 c l (n,m) eucn tnespot nnuer at time k

,m

Crk 2 ya cell (n,m) eCoun transicort number at tiectio

k n '

Pe/k v i0 cell (n,m) Peclet number at time k
Yn,m 2

Fe ~l 2 y-elctycmpnti cell (n,m) Peclet numeriatttime 2

At 2 time step length
1 a space increment

Au2 1 = a space increment

01 cell (n,m) stretching coefficient in the a.,1 direction

(P)n cell (n,m) stretching coefficient in the a2direction

ak n

unm+l/ 2  velocity component in cell (n,m) at time k in the
k direction

ver he cp velocity component in cell (nm) at time k in thea

Kenm+/2i p va e s cecnin e time k in the
s direction

, a k k03 15

Kn~l2m 2dispersion coefficient in cell (n,m) at time k i h

nr'nm Yn/ -

L1direction.1

In general, these dimensionless numbers vary in time as veil as in space
over the computational grid and time interval of concern. Normal prac-
tice is to replace the time dependency of t he cell velocity components
by their maximum values, thus removing the time dependency. In all
simulations, the following relations for the transport cell Courant
numbers hold.

Crk Crk < 0.3 (35)
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The time dependency in the Peclet numbers, may be removed by sub-
a 1 2

stituting Equation 31a into Equation 34a with R - 0.0 ft2/sec.

Thus obtain for Pek (results for Pek are analogous)
Xn,m Ynm

uk G ) Aa Cn(kG) AQ
Pek n_ 1/11 1 m I m1 (36)

n - Dhk,m

k k
Since C and I vary extremely slowly with Lime, we may drop then,m njm
k superscript and obtain

Cn,m(P
) A 1

Pe m (37a)

n,m Dhn, m

Cnm( 2 ) Au2

Pe - n (37b)
Yn,m D/ghn~

~~n~m

In all simulations, the following relations hold for the cell Peclet
numbers in the vicinity of the sharp front:

Pe , Pe > 100 (38)
Xn,m Yn,m -

Results at the end of the simulation for the FTUS scheme are shown
in Table I. All concentrations are positive and the initial mass of
0.132435 x 1014 equaled the final mass plus the diffusion of material
through the boundaries to within the precision limits of the CRAY I-S.

Results at the end of the simulation for the FTCS scheme are shown
in Table II. Since the cell Peclet number limit of 2 is violated in the
vicinity of the front, oscillations devel.op behind the movement of the
front. Mass is conserved in the simulation, at the expense of negative
concentrations and cell concentrations greater than i.3.0.

The three FCT limiters outlined previously were tested. The origi-
nal Zalesak limiter results are shown in Table III. Cell concentrations
greater than 10.0 --ere developed. The alternative one (mixed time level)
limiter results are shown in Table IV. No cell concentrations exceed 10.0.
However, Q+ and Q may now be negative unlike in the original limiter.
Some small negative concentrations are also developed. The second alLer-
native (previous time level) limiter results are shown in Table V. No
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Table I. FTUS Results at 5T (x 10 )

M/N 100 101 102 103 104 105 106 107

50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

51 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

52 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

53 0.0 20.0 20.0 20.0 20.0 21.0 0.0 0.0

54 7.0 9998.0 9998.0 9997.0 9997.0 9988.0 0.0 0.0

55 12.0 9961.0 9960.0 9959.0 9959.0 9944.0 0.0 0.0

56 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

57 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table II. FTCS Results at 5T (x 10 )

M/N 100 101 102 103 104 105 106 107

50 0.0 0.0 0.0 0.0 0.0 0.0 -0.0 0.0

51 0.0 0.0 0.0 0.0 0.0 0.0 -0.0 0.0

52 0.0 0.0 0.0 0.0 0.0 0.0 -0.0 0.0

53 0.0 10.0 10.0 10.0 10.0 10.0 -0.0 0.0

54 4.0 10009.0 10005.0 10005.0 10005.0 10001.0 -4.0 0.0

55 6.0 9985.0 9979.0 9978.0 9978.0 9970.0 -6.0 0.0

56 -0. -14.0 -14.0 -15.0 -15.0 -16.0 0.0 -0.0

57 0.0 0.0 0.0 0.0 0.0 0.0 -0.0 0.0

96



Table III. Original Zalesak Limiter FCT Results at 5T (x 10 )

M/N 100 101 102 10.j 104 105 106 107

50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
51 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
52 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
53 0.0 17.0 16.0 16.0 16.0 10.0 0.0 0.0
54 6.0 10001.0 10001.0 10001.0 10001.0 9996.0 0.0 0.0
55 6.0 9967.0 9960.0 9959.0 9959.0 9944.0 0.0 0.0
56 0.-0 0.0 0.0 0.0 0.0 0.0 0.0 -0.0
57 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table IV. Mixed Time Level Limiter FCT Results at 5'" (x 103)

M/N 100 101 102 103 104 105 106 107

50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
51 0.0 0.0 0.0 0.0 0.0 0.0 -0.0 0.0
52 0.0 0.0 0.0 0.0 0.0 0.0 -0.0 0.0
53 0.0 18.0 17.0 17.0 17.0 11.0 0.0 0.0
54 7.0 10000.0 10000.0 10000.0 10000.0 9995.0 0.0 0.0
55 6.0 9967.0 9960.0 9959.0 9959.0 9944.0 0.0 0.0
56 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
57 0.0 0.0 0.0 0.0 0.0 0.0 -0.0 0.0

Table V. Previous Time Level Limiter FCT Results at 5T (x 10 3)

M/N 100 101 102 103 104 105 106 107

50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
51 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.052 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
53 0.0 20.0 20.0 20.0 20.0 17.0 0.0 0.0
54 7.0 9998.0 9998.0 9998.0 9997.0 9990.0 0.0 0.0

55 7.0 9960.0 9960.0 9959.0 9959.0 9944.0 0.0 0.0
56 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
57 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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cell concentrations exceed 10.0, Q+ and Q- are nonnegative, and no
negative concentrations are developed.

The FCT method results exhibit nonoscillatory profiles with less
frontal smearing than the results obtained by the FTUS method even after
only five time steps. FTCS methods are unacceptable due to their oscil-
latory behavior. To obtain oscillation free results with the FTCS
method, the space step would be so small that an application to Missis-
sippi Sound would be economically infeasible.

10. CONCLUSIONS AND DIRECTIONS OF FUTURE WORK. For the sharp
front problem, the FCT method employing the previous time level limiter
was found to be superior to any of the other methods. Based upon this
finding, Lhe FCT meLhod employing the previous Lime level limiter is
recommended for further study. Presently work is under way to consider
verifying Lihis FCI etLhod and calibraLing Lhe dispersion coefficients.
A 5- to 6-day time period is being contemplated for the calibration
period. Based upon the 6-minute time step used in the sharp front
problem, simulations on the order 1200-1440 time steps will be performed.
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to publish this information.

12. REFERENCES.

1. Wanstrath, J. J., Nearshore Numerical Storm Surge and Tidal Simula-
tion, Technical Report H-77-17, September 1977, U. S. Army Engineer
Waterways Experiment Station, CE, Vicksburg, Mississippi.

2. Butler, H. L., "Evolution of a Numerical Model for Simulating Eong-
Period Wave Behavior in Ocean-Estuarine Systems," in Estuarine and
Wetland Processes, Hamilton, P. and Macdonald, K. (eds.), Plenum
Press, New York, 1980.

3. Butler, H. L. et al., Waterways Implicit Flooding Model Documentation
Preliminary Draft, Fall 1981, U. S. Army Engineer Waterways Experi-
ment Station, CE, Vicksburg, Mississippi.

4. Boris, J. P. and Book, D. L., 1973 (Jan), "Flux-Corrected Transport I:
SHASTA, A Fluid Transport Algorithm that Works," Journal of Computa-
tional Physics, Vol. II, No. 1, pp 38-69.

5. Zalesak, S. T., 1979, "Fully Multi-Dimensional Flux-Corrected Trans-
port Algorithms for Fluids," Journal of Computational Physics, 31,
pp 335-362.

6. Leendertse, J. J., A Water Quality Simulation Model for Well Mixed
Estuaries and Coastal Seas: Vol. I, Principles of Computation,
The Rand Corporation, RM-6230-RC, February 1970.

98



Grid Generation Techniques for Projectile Configurations

Charles J. Nietubicz
Karen R. Heavey

Launch and Flight Division
U.S. Army Ballistic Research Laboratory

U.S. Army Armament Research and Development Command
Aberdeen Proving Ground, Maryland 21005

Joseph L. Steger

Department of Aeronautics and Astronautics
Standford University

Palo, Alto, California 94305

ABSTRACT. The determination of accurate projectile aerodynamics is a
major area of concern for shell designers involved with new shapes and
Ballisticans concerned with developing artillery aiming data. To achieve the
desired goals a research effort has been on going within the Aerodynamics
Research Branch/BRL to establish a predictive capability for determing pro-
jectile aerodynamics. Modern finite difference codes have been applied to the
projectile problem and encouraging results have been obtained in transonic 1'2

and supersonic 3 flow. The generation of good computational grids has been a
prerequisite for achieving these flow field solutions.

This paper describes a versatile grid generation program which has been
developed for standard, hollow and non-axisymmetric projectile shapes. The
grid generator makes use of both elliptic and hyperbolic type partial differ-
ential equation solvers. The code allows arbitrary grid point clustering
along the body suface in areas of anticipated flow field gradients. The outer
boundary can also be arbitraily defined with its own clustering distribution.
The grid is then generated between these two boundarys with either straight
rays or by use of an elliptic solver. For those cases when the outer boundary
is not restricted, the grid can be generated using a hyperbolic solver which
adds the additional benefit of an orthogonal mesh.

The mathematical development of the clustering functions and partial
differential equation solvers are described and a series of grids are pre-
sented which show the versatility of the grid generation program. Grids for
ogive-cylinder-boattail configurations, hollow ring airfoil projectiles and
non-axisymmetric projectiles are discussed.

1. INTRODUCTION. The numerical solution of the Navier-Stokes
4 '5 '6

equations has been successfully applied to a wide variety of problems. The
versatility of these methods is inpart attributed to the solution of the
transformed set of differential equations. Using transformed equations the
physical space can be mapped onto a regularly spaced rectangular region for
two dimensional flow. This mapping allows for a wide variety of projectile
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configurations to be solved using the same basic numerical technique. An
example of some characteristic projectile shapes are shown in Figure 1. A
standard projectile shape which consists of an ogive cylinder boattail is
shown in la; a more non-conventional shape but one of considerable interest,
the triangular boattail configuration in Ib; and a tubular projectile
configuration which has been type classified and is currently in the Army
inventory, in 1c. To calculate the flow field for any one of these shapes the
first requirement is to develop a suitable finite difference grid for use with
the equation solver. The grid generator described in this paper addresses
this problem.

Grid generation routines are employed to generate a network of constant t
and n lines in the physical x-y plane as indicated in Figure 2a. Correspond-
ing uniform values of E and n in the computational space define a one to one
mapping between points j,k in the physical plane to points j,k in the computa-
tional plane as shown in Figure 2b. The mapping functions are described, at
least numerically, once &j,k and nj,k are known in the physical plane as a

function of xj,k and Yj,k" The metric quantities Cx, iy nxo and ny needed in

the transformed flow equations can then be determined numerically (see, for
example, References 4-6).

The grid generation program presented here describes earlier work done by
the authors 7 as well as extensions which include a hyperbolic solver and the
addition of more general projectile shapes. The grid generator is modular and
begins with a determination of the body shape. The inner body clustering
routine is then called to distribute points in the vicinity of previously
determined flow field gradients. The next option allows for the insertion of
stings for wake modeling, a rear cut or forward cut. If the outer boundary is
free or unconstrained as is the case for conventional projectiles, the hyper-
bolic solver, which generates a smoothly varying orthogonal grid, is called.
For those cases where the outer boundary is constrained, as is the case for
tubular projectile shapes, the outer boundary clustering routine is called.
Once the outer boundary is specified the elliptic solver is called. The grids
generated up to this point would be planar and sufficient for axi-symmetric
calculations. However for three dimensional flow fields a periodic or non-
periodic grid is generated by spinning the planar grid about the symmetry
axis. A flow chart of the overall grid program is shown in Figure 3.

The following sections of the paper will present some of the details used
for the inner boundary clustering the outer boundary description and interior
grid generation.

2. INNER BOUNDARY DESCRIPTION. The body shape can be input to the
program by cards, file specification or as a set of x,y ordinates. The data
is assumed to be non-dimensional with respect to the diameter or cord depend-
ing on the projectile configuration. Additionally, the code can generate a
parabolic arc or standard class of projectiles such as sharp or blunt, tangent
or secant ogive-nose, cylindrical body, boattall, or spherical cap. Once the
body shape is determined the values of x along the body axis are distributed
by contiguously combining segments of the clustering function
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xo ( x. ( xf
2 3 0 x f

x X0 + a* + b + cJ ()

where *j (j-jo)/(jf-jo) and j is an index value such that points jo to if
lie in the interval xo to xf and xjo xo while xjf xf. Equation (1) is

used to cluster xj as a function of j. The user determines the shape of the

clustering function by specifying the initial and final increments of x, that
is

j+1 (2a)
0 0

Vxf = xjf- xjf-l (2b)

Since xo and xf are also specified, a, b, and c are determined

c = {Vxf + Ax - 2h(xf Xo)}/(h - 3h2 + 20 )

b =AX 0  h(xf xo) c(h3 - h) 1/(h 2 - h)

a = x - x0 - b- c

where h = (jf - .

The amount of clustering at each point is determined by the specified
values of Axo and Vxf. Moreover, because Ax0 and Vxf are specified, the user

can smoothly patch functions together to form a general clustering function.
One drawback to the clustering function, Eq. (1), is that the function is not
guaranteed to be monotone in the interval. This can happen, for example, if
Ax0 is too small and Vxf too large.

At this point a sting or forward cut can be added to the previously
described body as shown in Figures 4a and 4b. Again the clustering function

Sof Equation (1) is used to distribute points along these new boundaries.

S3. GRID GENERATION USING A HYPERBOLIC SOLVER. For most projectile
applictions the outer Boundary is unconstraine d imply needs to be placed

far enough away from the projectile body so as not to adversely affect the
flow *ield solution. This situation represents an ideal case for a hyperbolic
grid generation scheme.

1
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Once the body points have been redistributed and the sting or cut has
been determined, a grid can be generated using a hyperboli, solver similar to
that described in Reference 8. Before the actual solver can be implimented
however, the distance to the outer boundary must be specified and either con-
stant spacing in n or some type of stretching function is required. The n
stretching used here is determined by the following relationship

Ask = Aso (1 + e)k- l , k = 1, kmax - 1 (3)

Here Aso is the minimum specified grid spacing desired at the wall or inner

boundary. The paraMeter c is determined by a Newton-Raphson iteration process
so that the sum of the above increments matches the known arc length between
n = 0 and n = nmax for points which have the same value of &.

The governing equations for the hyperbolic solver are obtained by
requiring: (1) the coordinate lines & and n to be orthogonal; and (2) the
specification of a cell volume or area for the two dimensional case. The
condition of orthogonality requires

A n = 0 (4)

The second equation is obtained by specifying a grid cell volume (or area in
two dimensions). Since the grid cell volume is finite the transformation
Jacobian will be greater than one, i.e.,

dxdy = Ixy n -Xnytj ddn (5)

The set of grid generation equations are therefore given in the physical plane
by

xnx + 4yny -0

&xny y x
or in the transformed plane by (6)

xx n + y 0
x V11 - X nY& 1/i - V

Using local linearization for this set of non-linear differential equations,
the resulting system is shown to be hyperbolic 8 and can therefore be marched
in the n direction.

10
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The linearized set of differential equations to be solved numerically is
written in vector form as

Ar + B = (7)

where

8A B

Y- X0 Iy X0I

V- + r =

0 V 01[X
where x0 , Y1, etc., refers to known conditions.

The set of Equations (7) are solved with an implicit finite difference
scheme which is first order accurate in the n direction(k) and where central
differencing is used in the t direction(j). The resulting set of finite
difference equations becomes

ArrBr - rjk+ (8)
Aj+l,k+l " ' j-l,k+l ) + B+rj k+ I, " jk )  1 j,k+l 8

2AC An

Rearranging Eq. (8) and setting An = at = 1 results in

A+ A + +rj+1,k+1 jrk+ J,k+1 j,k1 +  j,k j,k+1 (9)

where "

(x~xO + yZY j,k1
j~k+1 (-yOX0 . XYO)jk + V + V4

Equation (9) is now in a form which can be easily solved by inverting a block
tridlagonal matrix with 2 x 2 blocks. The terms xO and yO are central differ-
enced as
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: j+1,k j-l,kx&j,k

(10)

A = Yj+,k Yj-1,kY&j,k 2

The terms x0 and yo are obtained from Equation (6) evaluated at the old
n ni

station(o). That is
x0x+ 0 0 0

xx n + 0  = 0

xoy n - ny V

Solving for x0 and yo with x0 and y0 given in (10) yields

xO - 0 X0 vo
0 = 42 = (12)(0 I +y0 (x0 +y{ )

The cell volume remains to be specified. This specification is important
since it has the effect of controlling the grid evolution as the solution is
being marched out from the body. The method chosen here is straight forward
and uses the stretching function given by Equation (3). Specifying the
minimum spacing at the wall As0 and the total number of points, Jmax, in

the n direction an array of arc lengths Ask  is determined. Since the Ax is

known along the j line, the volumes are calculated by

V = (Ask) (xj+lk - Xj,k) (13)

This specification of cell volumes yields smoothly varying grids in the
n direction. Grid volume control is obtained by varying the arc length
distribution Ask and/or surface point distribution. An dditional volume

specification approach can be found in Reference 8. A grid generated using
this technique is shown in Figure 5a and 5b for a s':andard projectile
configuration with sting.

4. OUTER BOUNDARY DEFINITION. For those cases where the outer boundary
is constrained or specified a grid point distribution along the outer boundary
is required. An example is shown in Figure 6 . A part of the grid generation
problem then is the formation of an arbitrary outer boundary. Here this
boundary is built up by connecting contiguous cubic segments, which in the
degenerate case can be straight lines. Figures 7a and 7b illustrate two
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typical outer boundary curves. In Figure 7a three cubic segments make up the
boundary, n = nma x .  Each segment is formed by specifying the values of x,y,

and angle e, at the endpoints, where B is the angle between the curve and the
x axis. In the example, Figure 7a, a = 900 b = c = 0, or 180° and 0 d =
900.

The data (x,y,O) at each endpoint determines the shape of the parametric
curves

x = x0 + ait + C2t 2

Y : Yo + 0it + a2t 2

which are equivalent to a cubic

Y : Y + y(X-X) + y2(XX) 2 + Y3 (X'X) 3  (15)

The parametric cubic is used because the condition-L = can be specifieddx
(segment bc of Figure 7b has this constraint at both endpoints).

The solution for the parameters a1 , a2 , BI, and 82 can be found in Refer-
ence 7.

The outer boundary curve is thus made up of contiguous cubic segments
starting from the E = 0 boundary. Points are distributed along this curve
either as a uniform distribution of arc length, or as a specified arc length
distribution using the previously defined clustering scheme, Eq. (1). Since
the true arc length is not specified a priori, precise alignment of points
along the outer boundary can be determined only after the cubic segments are
specified and the arc length is computed.

5. STRAIGHT RAY AND ELLIPTIC GRID GENERATION. Once the boundary curves
have been specified and points are distributed on the n = 0 and n bound-
aries, two types of grid generation procedures can be used.

In the first case, lines of constant & (i.e., the rays emerging from the
body) are formed by simply connecting straight lines from points along n = 0

to points along n = nmax .  The spacing in n along each such line is either

uniform or is determined by the stretching relationship given by Equation
(3). Figures Ba and 8b illustrate a straight ray grid with clustering in Ti

for a tubular projectile.

In the second case, the grid is generated with elliptic partial differen-tial equations following References 9, 10, and 11. The grid generating equa-

tions are solved on the specified computational space for unknowns xj,k and
YJ ,k:
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x - 2xn + YX = _j 2 (x{ + -xn) (16)

CY&C" 2By &n+ yn = _j PyC + ny yn)

where

=x2 + 2 8x 2y 2
a Yn , y n x x n + Y&Yn' Y  x, 2 + y 2, x jXr

and

T = P0 ea(n-no) + ea(nnmax)

Q = Qo eob(n-n°) + Qm eb(n-nmax)

Here P0, Q0 , Pm, Qm, a and b are prescribed clustering parameters. Along the

n = 0 and n = nma x boundaries, xj,k and Yj,k have been previously prescribed.

Along the C = 0 and & = Emax' which are either vertical or horizontal lines in

the physical space, the following boundary conditions are enforced: either

x is given and y= 0

on a vertical boundary, or (17)

x= 0 and y is given

on a horizontal boundary.

The difference equations to Eq. (16) (see Reference 7) are solved with a
successive line over relaxation (SLOR) procedure. As an initial guess for the
relaxation procedure the straight line ray procedure previously described is
used. For the most part, if coefficients P and Q are large, the SLOR pro-
cedure is very difficult to converge. Consequently, the algebraic clustering
function, Eq. (3) is recommended.

In the algebraic clustering approach the elliptic solver is used to gen-
erate a grid with P = Q = 0. The x,y points along a = constant line are
then redistributed along this line as a function of arc length. The clus-
tering function Eq. (3) is used for this purpose. This procedure works quitewell and provides excellent control of the grid spacing near the body surface.
Further details are given in Reference 7.
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The elliptic solver need not be used over the entire range in F. Because
of the boundary condition, Eq. (17), the elliptic equations can be joined to a
straight ray along any vertical or horizontal boundary line in C. Figure 9
shows details of such a procedure used for a secant-ogive-cylinder boattail
projectile which also includes a sting. Here the c-region over the secant-
ogive nose is generated using the elliptic equations while the remainder is
meshed with straight rays. After the basic grid is formed, the entire grid is
clustered in n using Eq. (3).

6. 3D GRIDS. The final option available in the code is the ability to
generate three dimensional grids. At present the grids are formed in a two
dimensional plane and then rotated about a symmetry axis. The rotation is
either periodic or non-periodic depending on the grid desired. For cases
where the flow field has planar symetry, such as a projectile at angle of
attack, without spin, a non-periodic grid is generated.

The generation of grids for projectile shapes, with non-axisymmetric
sections (Figure 1b) is accomplished with a series of planar grids. Planes
are generated normal to the projectile axis at incremental values of Ax. For
each of these planes a grid is generated using an 0 type grid (Figure 10).
These grids are then combined to form a three dimensional mesh making sure
that continuity in the x direction is maintained.

7. SUMMARY. A versatile grid generation program has been described
which utilizes general elliptic and hyperbolic equation solvers for internal
grid generation. The flexibility of longitudinal grid point distribution is
obtained with the general clustering functions allowing points to be placed in
the vicinity of flow field gradients. Grid clustering is also obtained near
the body surface for viscous flow field calculations.

A series of grids have been presented which show the versatility of the
code. Grids for secant-ogive-cylinder boattails have been shown using an
elliptic solver, hyperbolic solver and a hybrid elliptic/straight ray solver.
The generation of a grid for a non-conventional hollow projectile shape has
been demonstrated.

8. ACKNOWLEDGEMENTS. The authors would like to thank Dr. Harry Dwyer
for his helpful discussions concerning the hyperbolic solver.
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a. Conventional Secant-Ogive Cylinder Boattail (SOCBT) Projectile

IOTRIANGUIAR IOATTAIL

b. Secant-Ogive Triangular Boattail Projectile

c. Tubular Projectile

Figure 1. Projectile Configurations
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APPLICATION OF. RElATIVE COORDINATES IN HYDRODYNAMICS

R. H. Multer

Waterways Experiment Station
Vicksburg, MS

ABSTRACT. A method for approximating the solution of th- exact hydrodynamic

wave problem is presented.

1. Introduction. It is assumed that the fluid in question is inviscid, of

constant density and incompressible and that the flow is irrotational. The

case of two-dimensional flow, restricted to a vertical plane, is considered.

In modern times (see Refs 1 and 2) perturbation expansions have been

used to develop approximate mathematical models of the hydrodynamic wave

problem, i.e., free-surface flows of inviscid, constant-density, imcompressible

fluids. In most instances these models cannot be solved exactly and it is

essential to resort to numerical computation to obtain an estimate of the

wave motion. Involved then are three layers of approximation: those about

the fluid, those in the perturbation expansion, and those in the numerical

approximation. Thence, when the agreement between physical observation and

predicted wave behavior are not overly good it is infeasible to identify the

culprit.

Presented here is a method of numerically approximating the solution of

the exact hydrodynamic wave problem. The most obvious difference between the

two is that the intermediate approximation of the perturbation expansion is

avoided. Thus comparison between physical c servations and computed wave

behavior becomes, essentially, an assessment of the validity of the physical

assumptions about the process. Madsen and Mai's development (Ref 2) is

at least superficially similar to that presented here, i.e., a velocity potential

is introduced in both cases and a polynomial is introduced for the velocity
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potential in both cases. Madsen and Mai treat this series as a power (Taylor)

series.

O(x,y,t) = E On (x,t),(y+b(x))n

n=o

In order for this series to be a harmonic power-series the elevation of the

channel bottom, b(x), must be on analytic function (see Ref 2). In most

instances this will not be the case. Hence their approximation cannot

converge to the solution of the problem. We should note also that power

series (see Ref 3 and Ref 4) have relatively slow and weak convergence

properties. We shall apply Ritz's method to determine the value of the

functions {n 1. The associated convergence is more rapid (see Ref S and Ref 6).

2. Development of the Hydrodynamic Wave Problem. There are two coordinate

systems of importance in classical dynamics. The Eularian coordinate system

which describes the behavior of a substance as points fixed in inertial space

and the Lagrangian coordinate system. In the dynamics of systems of discrete

particles we have the location of the ith particle.

X. Z f.(t)

its velocity

vi = dtx = f. (t)

and its acceleration

I'

a. = dv = dtt = f.(t).I t-i tti .
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The Lagrangian coordinate system is the extension of these definitions for a

system of discrete particles to a continuum. Specifically

Displacement x = x(Cf!,t) (1)

Velocity v = at x(catt) (2)

Acceleration a = att x(X,Bt) (3)

The Lagrangian and Lulcrian Coordinate Systems are related by this chain

rule.

t (a0) t (xy) + .x0 tx t ay4* t"

which because of Eq 2 may be rewritten as

Dt, = a t + uax + vay (4)

where the notation Dt is introduced for clarity.

The Dynamic Equation of Bernoulli, written in Eulerian coordinates, i'

1 2 + 0 2 + p
+ 0 + +gy =C (5)

where * is the velocity potential and

Cx = x€  u, Oy =ay =v (6)

Eq 6 implies that

2 2 2 (7
(x + ¢ Ux + V y -o (x +y (7)

In line 8 the notation (,8) means that a,8 are to be held fixed.
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Thence on substituting from Eq 7 into Eq 5 and recalling Eq 4 we have

2

t 1 2 (

Equation 8 has been used previously by the author (Ref 7) in the study of wave

motion in a channel of constant depth.

The difference between Eq 5 and Eq 8 should be kept clearly in

mind. Eq 5 gives the rate of change of 0 at a fixed point inertial space

where Eq 8 gives the rate of change of 4 following a particle. For wave

motions in elastic bodies the displacement of particles could be expected to be

typically quite small and a t to be a good approximation of Dt 0. For large-

amplitude, water-waves the displacements would be large and this would not be

the case. This is mentioned because there is an occasional paper on water-

waves where the distinction is not recognized.

Considered next are mixed coordinate systems. Suppose that axy (mt)

is finite so that

y = y (x,O,t) (9)

and

f(x,y,t) = V(x,,t) (10)

are well behaved functions. Applying the chain rule to Eq 9

atY(am = atY(x) + ax y a tx (L,)

or

D y = v ty + uaxy (11)
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and similarly

D t= T tT(a) I U V (12)

Before proceeding further it seems advisable to consider the continuum

hypothesis which is fundamental to classical mechanics. The following statement

is due to Stoker (Ref 8).

THE CONTINUUM HYPOTHESIS: The motion of a substance can

be described as a topological deformation which depends

continuously on time.

The implication of the continuum hypothesis is that particles which are on the

free-surface or the bottom of the channel remain there. Thence we may interpret

n(x,t) = y(a,Ot)(P = const)

as a mathematical parametric description of a Lagrangian surface. Eq 11 then

becomes, because of Eq 2

Dtn = v = 3tn+U0xI (13)

or

tn =v - uaxn (14)

Also, on substituting from Eq 12 into Eq 8

P 12 2
a+ y - I(u + v ) + U = C (15)
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A physical interpretation of the coordinate system may be useful.

Suppose that a vertical wire passed downward through the fluid and that a cork

was free to move up and down the wire. Equation 14 would describe the location

of the cork and Eq 15 would describe the time rate of change of 0 following the

cork. Let us compare Eqs 5, 8, and 15. Equation 5 describes the variation

of 0 at fixed Eulerian points whereas we shall want to describe the variation

of * following particles in the free-surface. Equation 8 has two (sometimes

unavoidable) unfavorable properties. First, if there is a net flux through

the system, particles must be continuously added to and deleted from the

system in numerical computations, because only a finite length of channel

may be modeled numerically. Secondly, a set of particles which are initially

at some fixed horizontal distance apart do not necessarily remain so and this

of course leads to an obvious problem in applying numerical techniques. Equation

15 is introduced to overcome these two problems. Equation 15 becomes unattrac-

tive when one end of the channel is bounded by a mechanical generator or a

sloping wall which pierces the free-surface. These last two circumstances are

of a complexity which precludes their treatment here.

3. STATEMENT OF THE PROBLEM AND SOLUTION ALGORITHM

We shall treat the specific problem of sloshing in a two-dimensional basin

bounded by vertical walls.

- (x,t) -Nn n (xt) p 0

ax

an

FIG 1
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The problem is depicted on Fig 1. It is supposed that at some initial

time

n(x,O) = fl(x) (16)

ay (X. n.0) = f 2(x) (17)

where fI and f2 are known functions. By solving a boundary value problem of

the second kind for the Laplace equation

xx 0 yy 0 (18)

and then performing some ancillary computations we may determine ,u, and

v at time t = 0 along the free surface. Equations 14 and 15 may be written

as

atn= v-uaxn (19)

t#(x~n) = C - gn + l(u2+v2 ) - UOx t (20)2xCn~t)

where every term in the right hand side is known so that we may use those relations

to estimate numerically the location of the free surface and the distribution of

along it at time t dt. At this point the mixed boundary value problem for

the Laplace Equation

xx yy( (21)

O(x,n) = *(8) (on the free-surface) (22)
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3013n = 0 (elsewhere) (23)

where 0(8) is the just computed distribution of 0 along the free surface,

must be solved. Thereinafter we may continue to estimate values of 0 and n

at still later times by cycling through Eqs 19 and 20 and the mixed boundary

value problem.

4. Approximate Solution of the Mixed Boundary Value Problem. The remainder

of this paper is devoted to the approximate solution of the mixed boundary

value problem. It is convenient to introduce the relative coordinate

y-b (24)
h

where the depth h is

h = n-b (25)

thence

bx+h c
x h y 1/h (26)

and, also

S- f '(02 +y2)dxdy

R

ff 02 + 22 aax0 +  2 y)2 dxd; (27)
x x x x y

R*
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When R is the y-simple region occupied by the fluid and because of Eq 24 R is the

strip of unit height.

It is assumed that
=(n (x,t) + nn(x,t)(I- ) n  (28)

This expression satisfies apriori the free-surface boundary condition

O(x,n,t) = N (x,t) (29)

and represents a "relatively" complete class of functions. Equation 27 is the

functional associated with the Laplace equation and the natural boundary condition

a¢la n . Finding an extremal of Eq 27 over the relatively complete class of

functions given by 28 is, thence, equivalent to finding a solution of the

Laplace equation such that a4j3n along the boundary except along the free-surface

where * is constrained, i.e., this is the solution of the mixed boundary value

problem. Moreover, (see, Ref 6) applying Ritz's method results in a sequence

of approximations which converges to the solution of the problem.

Substituting from exps. 28 into Eq 27 and integrating with respect to

results in

1: f G + EMm F + Amn m n

+ B n 0 + Cmn mon dx (30)

Hence, because of Euler's Equation

d (A 0' + B + Emn n mn n m

-Bruo -C r -F =0 (31)

an n mn n m
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provides the extremum of I. Associated with the end boundary conditions

are the boundary conditions

Of = 0 (at the ends of the channel) (32)
n

Equations 31 and 32 then constitute a two-point boundary value problem.

The coefficient matrices of Eq 31 are nonconstant and it is unlikely that

a closed form solution of the two-point boundary value problem exists except as the

simplest cases. We shall therefore consider the problem of solving Eq 31

numerically. The simplest problem which might be considered would be for the

region

b(x) = 0, h(x) = n(x) = 1 (33)

Retaining only one term in the expansion, Eq 31 becomes

1 "1 .,,34'i - 01= 2. (34)

the solution of the homogeneous equation is then

V.3 x + -/3x=ae + be (35)

This simple result tells us a great deal. Specifically, we see that because

of the exponential factors "shooting methods" for solving the two-point

boundary value problem would be unstable and therefore finite difference

methods are more appropriate. Also we might note that when 0 is replaced by

26x
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the spectral radius of the coefficient matrix in the finite difference

formulation is less than 1. Hence this matrix is non-singular and the

existence of a solution insured.

5. Local Approximation. The theory presented to this point would seem to be

of academic value in ascertaining how accurately hydrodynamic wave theory

describes real wave phenomena. It would also appear economically feasible to

solve two-dimensional wave problems numerically when real world considerations

warranted. The theory presented may immediately be extended to three-dimensions.

The problem is, Eq 31 then becomes a system of partial differential equations

and the solution of them using contemporary computers would usually be too

expensive. Approximation of the solution of Equation 31 is then of some interest.

If one assumes that for all quantities in question

an, < Xn << 1

ax
n

The following approximation appears reasonable. First approximation

Cmn n  m E(o Fm - Em

Higher Order

M k) (F- E- B T (k-l)
i C n m E m mn n

The exact solution of the first approximation is
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O(r) ( hi- y) )_-) 2)

4
- b N (n-y) + 0(A)

The next approximation has been worked out. The obvious difficulty with it is

that fourth order derivatives of the variables become involved.

6. Summary. A method for approximating the solution of the exact hydrodynamic

wave problem has been presented. This method avoids the use of a linear

additive (Taylor's) series and perturbation approximation. It should,

therefore, provide a better approximation to the solution of the problem

in question.

Several experiments involving the solution of mixed boundary value

problems on the unit strip have been made. These may be compared to linear

wave theory. Retaining 4 terms in the series (Eq 28)--actually the odd

terms go out in this case--it was found that, for a X value (X= 27h/L)

value of 0.3, Ritz's method predicted the correct wave speed to four decimal

places, while a corresponding power series was accurate to less than three

decimal places. Collocation gave an estimate (using ; values of 0.25 and

0.75) which was substantially more accurate than the power series estimate

but less accurate than Ritz's method. What this computation suggests,

beyond the obvious, is that something on the order of 4 or 6 terms need to

be retained in Eq 28. For a given number of terms, the degradation of the

approximate solution is gradual and increases with h. Hence the shorter

the relative wave length, the more terms that need to be retained.
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A GENtKALiZED RANDUM CHOICE METHUD FUR GAS

DYNAMICS

James Ulimm *

Guillermo Marshall*

Bradley Plohr

Department of Mathematics
The Rockefeller University

New York, NY 10021

ABSTRACT

We solve a generalization of the Riemann
problem for gas dynamical flows influenced by
curved geometry, such as flows in a variable-area
duct. For this generalized Riemann problem the
initial data consists of a pair of steady-state
solutions separated by a jump discontinuity. The
solution of the generalized Riemann problem is
used as a basis for a random choice method in
which steady-state solutions are used as an Ansatz
to approximate the spatial variation of the solu-
tion between grid points. For nearly steady flow
in a Laval nozzle, where this Ansatz is appropri-
ate, this generalized random choice method gives
greatly improved results.

1. Introduction

Many computational methods for solving gas flow prob-

lems are based on approximating the problem with a number of
more elementary flow problems, called Riemann problems. The
solution of these Riemann problems are important because
they provide an explicit and elementary class of solutions
which contain extensive information about wave interaction.
They are the basic constructive step in the random choice
method, and they provide the key input into methods based on
front-tracking.

*Also at Courant Institute of Mathematical Sciences,
New York University, New York, NY 10012.
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The solutions of Riemann problems for flows influenced
by curved geometry exhibit, as characteristic phenomena, a
bending and either strengthening or weakening of the waves.
Curvature effects arise, for instance, in one-dimensional
flows in tubes with variable cross-sectional area and in
flows with cylindrical and spherical symmetry. Such flows
are called quasi-one-dimensional. Mathematically, the
curved geometry introduces a source term in the conservation
laws describing the flow, so that the conservation laws are
inhomogeneous. This source term influences the speeds and
strengths of sound waves and shock waves, so their trajec-
tories are not straight lines when drawn in the space-time
plane. The wave speeds and strengths depend on the source
term to first order in time, while the wave positions depend
on the source terms only to second order in time.

The purpose of this paper 1s to assess the benefits and

difficulties of including second order accuracy in the
Xiemann problem solution. for this purpose we studied gas
flow in Laval nozzles using a generalization of the random
choice method. To Include second order accuracy, the data
for a Hiemann problem is inadequate, however. The Hiemann
problem, a single jump separating two arbitrary constant
states, can be thought of as representing a localized por-
tion of a complicated flow field. In order to obtain second
order accuracy of the Iiemann problem solution it is neces-
sary to give as data not only the value of the states on
each side of the jump, but also their spatial derivatives.
To do this we suppose that over spatial mesh intervals the
solution is a solution of the steady state equations. This
gives rise to what we call a generalized Riemann problem,
which can be solved to second order in time. Our method of
solution Incorporates the generalized Riemann problem into
the framework of the random choice method; this constitutes
what we call the generalized random choice method.

2. The Generalized Handom Choice Method

The random choice method is a technique for computing
solutions of hyperbolic systems of conservation laws. It
consists of approximating the solution at each time step by
a piecewise constant state and advancing to the next time
step by solving the local Riemann problems formed by the
constant states on adjacent mesh intervals. The value of
the approximate solution over each mesh interval of the new
time step is taken to be the exact solution evaluated at a
randomly chosen point. The main advantages of the method
lie In its power of resolution for the numerical treatment
of discontinuities and sharp interfaces, and In its absence
of over- and under-shooting phenomena. The random choice
method was Introduced by GlimmLJJ for homogeneous systems of
conservation laws; It was developed Into a numerical method
by Chorintlj, who made extensive use or it for computations
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of combustion problems.

In its present form the random choice method cannot be
applied to inhomogeneous hyperbolic systems of conservation
laws, such as those describing quasi-one-dimensional gas
flows. Several attempts have been made to extend the method
to include these problems. SodLBJ developed a straight-
forward generalization using operator splitting. It con-
sists of a two-step procedure. In the first step the inho-
mogeneous term is removed and the Riemann problem for the
resulting homogeneous system is solved and sampled. In the
second step the system of ordinary differential equations
obtained by removing the convection terms is solved, using
the solution from the first step as initial data. The
advantages of this procedure are its simplicity and robust-
ness. However, for certain applications, such as steady
nozzle flows, this method requires that the mesh size be
quite small to obtain reasonable accuracy.

Another generalization of the random choice method,
which uses characteristic tracing, was developed by Marshall
and Menendez(61. This method, by contrast, is a one-step
procedure. The Riemann problem for the associated homogene-
ous system is solved and the influence of the inhomogeneous
term is introduced by integration along characteristic
curves; only then is the solution sampled. The method of
characteristic tracing is more accurate than Sod's splitting
method for equal mesh size, but the computational effort for
obtaining the same degree of accuracy is greater for charac-
teristic tracing.

In [5] Liu proved global existence for quasi-linear
hyperbolic systems, including quasi-one-dimensional gas
flow, using a method which generalizes that of Glimm. His
results were limited, however, to gas flows which are
nowhere sonic (but see [4]). Fok[2] used this method as a
basis for constructing a numerical scheme, which he called
Liu's scheme. Here the solution at each time step is
approximated by a piecewise steady flow. It is advanced to
the next time step by solving the ordinary Riemann problems
formed by the Jumps between steady flow states on adjacent
spatial mesh intervals. The approximating steady flow for
each mesh interval at the new time step is obtained by sam-
pling this solution at a randomly chosen point (without
extrapolation using the steady state equations; cf. the gen-
eralized random choice method described below). Fok claims
that this method offers only marginal improvement over Sod's
method, and only at greater computational cost. In addi-
tion, it cannot handle transonic flows.

We now introduce the generalized random choice method.
This method is also based on the work of Liu, but is an
extension in two respects. Here again the solution at each
time step is approximated by a piecewise steady flow. It is
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advanced to the next time step by solving, to second order
in time, the generalized Riemann problems formed by the
steady flows on adjacent spatial mesh intervals. The
approximating steady flow for each mesh of the new time step
is obtained by sampling this solution at a randomly chosen
point and extrapolating from this point by using the steady
state equations. Thus we have extended Liu's methods to
include the curving of shocks and rarefactions on the level
of the local Riemann problem. We have alo included a sim-
ple stabilizing mechanism in the numerical scheme which
allows it to be applied to transonic flows.

The generalized random choice method was applied to
transient gas flows, with and without shocks, in a Laval
nozzle. We found significant improvement over finite
difference methods as well as the above mentioned generali-
zations of the random choice method. The major reason or
this improvement seems to be that the random fluctuations
caused by the sampling are greatly reduced: for nearly
steady flows the solution is better approximated by piece-
wise steady flows than by piecewise constant flows.

3. Numerical Results

We present the results of numerical tests using the
generalized random choice method applied to the problem of
transient gas flows which possesses an asymptotic steady
state whose solution is known. We compare these results
with those obtained using Sod's splitting method.

In the numerical tests we considered the flow of an
inviscid, polytropic, compressible gas through a
convergent-divergent (Laval) nozzle. The nozzle, taken from
Moretti[7], was composed of four parts, each of length 5.0:
an inlet section with constant area 1.5, a sinusoidal con-
traction to a throat with area 1.0, a sinusoidal expansion
from the throat back to area 1.5, and an outlet section of
constant area.

The initial conditions for the tests were intended to
simulate the starting conditions of a supersonic blow-down
tank. A high pressure region occupied the whole nozzle
except part of the outlet section, where there was a low
pressure region. The boundary conditions were as follows:
at the Inlet the total temperature and entropy were held
constant, while at the outlet the pressure was fixed. The
solution of this initial-boundary-value problem consists or
transient gas flow which in the large time limit tends to a
steady flow with subsonic flow in the inlet, sonic condi-
tions at the throat, and a normal shock downstream of the
throat. We describe the transients of the solution by means
of contour plots of the pressure in the space-time plane.
The asymptotic steady-state solutions are presented in plots
of the variation of the Mach number and pressure in space,

140



superimposed on the exact solution. We remark that because
of the presence of sonic conditions at the throat, this
problem is particularly difficult for methods based on
steady-state solutions.

Figs. la, lb, and 1c present the results up to time
200.0 obtained using the generalized random choice method
with 60 grid points. The corresponding results obtained
using Sod's method are shown in Figs. 2a, 2b, and 2c. In
both methods the general pattern of the transient flow is
correctly described: there is a rarefaction wave which
travels upstream, partially reflects from the inlet, and
finally causes the formation of a stationary shock (which is
represented by the closely spaced contour lines). In Sod's

method, however, the random fluctuations introduce spurious
transients which do not disappear even after long times.
These fluctuations diminish the quality of the asymptotic
steady-state solutions. In contrast, the generalized random
choice method converges to the asymptotic steady-state solu-
tion, and the details of the transients appear to be
correct. The fluctuations caused by sampling errors are
supressed in this method because of the better approximation
of the solution over mesh intervals.

4. Conclusions

We have Introduced a generalization of the Riemann
problem for gas dynamical flows in a variable-area duct, and
have used it as a basis for constructing a generalized ran-
dom choice method. For nearly steady flows we find this
method to be substantially better than other forms of the
random choice method and finite difference methods. This is
because it reduces fluctuations caused by the random sam-
pling, while maintaining the usual advantages of random
choice methods.
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1. INTRODUCTION

The flowing medium in a gun tube typically is a mixture of a compressible
gas with burning solid propellant grains. Details of the flow are important

for weapons development, but only bulk properties can be routinely measured,

such as the trajectory of the projectile, the pressure history at a fixed

station, the heating of the gun tube, etc. Therefore, a need exists for a
detailed mathematical model of interior ballistics two-phase flows.

A complete mathematical description of the flow could provide the motion
and combustion history of each propellant grain, and of the gas flow between

the grains. The corresponding local governing equations are easily
established, but they cannot be solved numerically because of the great number

of grid points needed to describe a flow with many moving interfaces. The
computational work can be reduced only by sacrificing the detailed description

of the flow. To that end one considers mean values of the two-phase flow that
are derived from the local properties of the gas and grains. The governing
equations for these average properties are established by averaging the local

governing equations.

In the present paper we derive the governing equations for a particular

set of averages. The averaging process is chosen with the special needs of
interior ballistics in mind and with attention to the numerical solution of
the ensuing equations.

Previous work on two-phase equations for interior ballistics has been

done by Gough (1974), Kuo et al. (1976), Fisher and Trippe (1974), and Krier

et al. (1974). Gough's equations were later augmented and used in a computer
program developed by Gibeling et al. (1980). Our equations are different

because we have used a different averaging process, chosen a different set of
dependent variables, and changed some correlation models that provide

experimental input to the theory.

The averages in this report are computed by weighted averaging over a

finite volume. Gough (1974) used instead a weighted averaging over an
infinite space-time domain with an unspecified weight function. The rationale

of our choice is based on the observation that any averaging smooths out local
details. In order not to loose too many details, one should, therefore, use

the smallest averaging domain that is compatible with the requirements of the
problem at hand. One requirement of the averages is that they should be
differentiable as many times as the ensuing governing equations indicate. It
has been shown by Delhaye and Achard (1977) that line or surface averages of a
gas/particle mixture do not possess the required differentiability
properties. Therefore, the smallest domain for averaging is a three-

dimensional volume. Time averaging is not needed to insure differentiability,
if the weight function for space averaging is chosen properly (see Section

2.2). If one, nevertheless, chooses to time average, then the time average
interval would have to be very small because we are interested in an accurate

characterization of a rapidly changing flow field.
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The size of the averaging volume is important. The use of an infinite

volume for averaging is not appropriate in confined flows because the sum of

the volume fractions of the two phases is not equal to one. This creates

problems for the formulation of the governing equations and the boundary

conditions, and for the interpretation of the results. The problem with the

formulation of the equations is eliminated by using an appropriate finite

volume average, while the others become more easily tractable. We discuss the

problems in Sections 4.4 and 4.6.

The average equations which are derived in Section 3 include the effects

of viscosity of the gas and of turbulence. Furthermore, the choice of

equations for averaging and the choice of dependent variables has a bearing on

the numerical solution of the equations. We have chosen a set of variables
that eliminates some possible numerical singularities, enhances the accuracy

of numerical differentiatlon, and separates important physical processes for

easier modeling. The chclice of variables is discussed in Section 4.2. We

also have chosen the internal energy equation for averaging instead of the

commonly used total energy equation. The reasons for this choice are that it

produces a clear separation of physical effects and a more lucid modeling of

two-phase phenomena. They are discussed in Sections 3.2.3 and 4.7.3,

respectively. As a result of the considerations of viscous effects and the

above choices, our governing equations differ from those derived by Gough.

Each set of equations has different approximation errors and requires some

different models of experimental correlations.

The experimental correlations in interior ballistics are characterized by

a scarcity of data. This is one reason why corresponding mathematical models

have not been firmly established. In Section 4.7 we list a set of

correlations, most of which are based on Gough's work. Some improvements and

changes reflect the difference of our approach.

Even with the reduction of the problem size by the change from local to

average functions, one is faced with a formidable numerical problem.
Typically, in a two-phase flow one has a set of eleven non-linear partial

differential equations. (Thirteen equations if a turbulence model is

included.) In order to describe the three-dimensional flow in reasonable
detail one has to specify the eleven variables at a minimum of about 54,000

grid points. Therefore, whenever possible, one would exploit the cylindrical
symmetry of the gun. If also the flow is cylindrically symmetric, then the
number of grid points may be reduced to about 1,500. The proper coordinates

for flows with cylinder symmetry are cylinder coordinates and we have,

therefore, listed in Appendix A all equations in cylinder coordinates, thereby

also assuming that the flow is independent of the circumferential coordinate.
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2. ANALYTICAL BASIS

2.1 Assumptions

In the next three Sections (2.2, 2.3, and 2.4) we shall discuss some

properties of averaged functions and develop general formulas that are needed

for the derivations in Section 3. The averages to be discussed are weighted
space averages over a finite averaging volume. We do not try to establish

general properties of such averages but rather concentrate on what is needed

for a specific interior ballistics modeling. For that application, the

quantities to be averaged are the local properties of a gas and of propellant

particles within the averaging volume. We assume that no other material is
present in the tube.

The gas is assumed to be non-reacting and obeying algebraic equations of
state, that permits one to express all thermodynamic variables in terms of two
such quantities. The particular equations of state considered are the Noble-
Abel equation with a constant ratio of specific heats. However, most of the
results are independent of the particular equations of state.

We will assume that the gas is in a state without shocks within the

averaging volume. This is necessary to have average equations with the proper
differentiability conditions. Particular differentiability conditions of the

local gas properties will be enumerated in Section 2.2.

If shocks are present in the gas flow, then one could average only over

the shock free regions and treat the shocks as explicit boundaries. However,
this approach has serious drawbacks because of the uncertainty of the

corresponding boundary conditions (see Section 4.6). Space or time averaging

is not the appropriate technique for the treatment of interior ballistics
flows with shocks or other internal discontinuities.

The propellant particles are assumed to be incompressible and elastic.

However, we shall neglect all effects of the rotation of the solid

particles. Like in the gas, the local material properties within and on the

surface of each particle are assumed to be differentiable functions of time

and space. Particulars of the differentiability conditions will be enumerated

in Section 2.2.

2.2 Averaging Integrals and Their Derivatives

2.2.1 Averaging Volume Integrals. We define the averaging volume V(x)

as the inside of a closed surface S(x). Both are independent of time and

dependent on a spacial coordinate vector x as a parameter. For instance, if

V(x) is a sphere, then x may be chosen as the center of the sphere. About the

surface S(x), we assume that it has a well defined normal almost everywhere.

The shape and the size of the averaging volume are assumed to be constant.
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The particles are defined by corresponding surfaces, sp. Because the

particles are moving and burning, the Spi are functions of time, but they are

independent of the parametric coordinate vector x. We assume that the

particle surfaces, too, have well defined normals almost everywhere. We

define as Sp the union of all those particle surfaces Spi that are within the

averaging volume V, including its surface S.. Accordingly, the

Intersection S11S can have a finite area. Most often, the area of the

intersection w llVbe zero (Figure 1).

F/M/rE AREA

ZEOAASA

Figure 1. Averaging Volume

All averages will be defined by integrals over the space occupied either

by gas or by particles. In order to have a convenient notation for the

corresponding integrals, we define a phasic function 8 as follows

0 If is inside a particle at time t

- (2.1)

I if g is outside particles or on a particle
surface at time t
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We will also use a non-negative weight function g for the calculation of

averages. Let

VG - f g(&-x) dV(t) - constant (2.2)
V(x)

be the integral of the weight function ("the weighted averaging volume").

Then the weighted volume fraction occupied by gas is

c(t,x) - f g(-x) dV(t) f B(t,g) g(t-x) dV(t)
SV gas(t,x) V(x)

gas(2.3)

The intrinsic average *(tx) of a function j(t,x) that is defined in the

regions occupied by gas is defined by

Q(t,x) (t~x) -I- Qs);tg v
VG a(t,x)

(2.4)
1

M- VG f 0(t, ) g(E-x) (t,E) dV(E)
V(x)

Notice that, whereas *(t,x) is defined only within regions occupied by gas,

the average *(t,x) is defined for all values of x (within limits outlinel ix,.

Section 2.3).
*

A corresponding average *(t,x) of a function *(t,x) that is defined only

inside the particles is given by

* 1
(1-a(t,x)l*(t,x) =- f [ 1-B(t,[)]g([-x)*(t,[)dV([) • (2.5)

V(x)

Sufficient conditions for the existence of the average function are the

piecevise continuity with respect to x of the functions 4(t,x) and *(t,x)

within their regions of definition. Obviously, the average of any function of

time only is the function itself.

2.2.2 Time Derivative of Volume Integrals. The averaging integrals

(2.3), (2.4), and (2.5) define functions of t and x. In this section we

formulate differentiability conditions of the average functions with respect

to time t.
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Applying TAibnitz formula (Truesdell and Toupin, 1960) to an averaging
integral (2.4) over Vgas we obtain

at f *(t,x,) dV(E) - f ir [*(t,x,&)] dV(E) +
Vgas(tx) Vgas (t,x)

+ f [*(t,x,&(n))(usp nsp)] dS(n)
Sp(t,x) PS
p

or (2.6)

at S (tF0 *(t~x,E) dV(t)-V(x)

=f dV(Q) + f *(t,xg(n)) (u sn ) dS(n)
V(x) S p(t,x) sp UP

where usp is the velocity of a point of SP and nsp is the outward unit normal
of Sp at-the same point. (The "outward" normal points by definition into the
grains, Figure 1.) The surface integral is only over Sp and not over Sv
because the latter surface is assumed to be stationary.

The first integral on the right-hand side of Eq. (2.6) exists and is a
continuous function of x and t if a*/It is a continuous function of x and t,
and a piecewise continuous function of & . The surface intigral over S in

Eq. (2.6) exists if the surface velocity is finite. However, the area of the
surface S_ has discontinuities with respect to x and, possibly, with respect
to t, whenever the intersection S (rS has a finite area. Therefore, the
surface integral is a continuous lunction of x and t only if * 0 on Sv.

Because in our case

*(t,x,4) - g(4-x) #-(t.9) ,(2.7)

we my formulate the following sufficient conditions for the continuity of the
time derivative of the averaging integral in term of g and :
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3 (t, ) is continuous with respect to t and piecewise
at continuous with respect to E

g( -x) = 0 on the surface S , (2.8)

g(Q-x) is continuous in V

We notice that the condition on ;, of course, applies only to the regions

where 0 is defined.

The differentiation formula (2.6) is in terms of g and

f gg (t)M L dV - f g (u on ) dS . (2.9)

v at av SBgpdV

p

The corresponding formula for functions * that are defined within the
solid grains is

f (1-B) g dV "f (1-0) g*dV+ fg*(u dS (2.10)
V V S o'

P

In the latter formula, the surface normal n 8 again points into the grains.
Because now we are integrating over the inside of the grains, the sign of the
last integral in Eq. (2.10) is opposite to that of the corresponding integral
in Eq. (2.9).

2.2.3 Spacial Derivatives of Volume Integrals. Applying Leibnitz type
formula to an averaging intergal (2.4) over Vgas one obtains*

V f B *,) ~(t,x,t) dV(t) f 0 B *1 dV + f #n dS + f lun dSV~x) V $ - S + $S ms~d
v p v p (.1

(2.11)

*We note that 4 could be a scalar, a vector, or a second order tensor. For

example, if 4 is a vector, a dot signifying the divergence of * and the dot
product of 4 with the normal should be used in Eq. (2.11). For simplicity,
the use of the dot is omitted In Section 2 wherever * is not specified. The
understood presence or absence of the dot should be clear from the context.
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Gauss theorem (Fulks, 1969, p. 354) applied to the same integration volume is

f a V& V - f ndS + f n spdS • (2.12)
V SV-Sp  Sp

Subtracting Eq. (2.12) from Eq. (2.11) one obtains

Vx fs dV - f 0 (Vx + V) ,V -d f n dsp S + f *a dS . (2.13)
V V S SpSI Sv

Sufficient conditions for the continuity of the right-hand side of Eq. (2.13)
are

(Vx + V) *(t,x,&) is continuous with respect to x and t, and
piecewise continuous with respect to F, 1

=0 on Sv

In our application we want some of the average functions to be
differentiable twice with respect to the spacial variables. By a formal
differentiation of Eq. (2.13) we obtain, assuming that 0 on Sv

VxVfxf OBdV - Vx fB (Vx + V dV -Vx f nsp dS " (2.15)

p

Next, we apply the formula (2.13) to the first integral on the right-hand aide
of Eq. (2.15) obtaining

Vx fV (Vx + V dV f (Vx + ) (Vx + V) dVv-

(2.16)

- f(V x + V&)mn spdS + f (Vx + V )n dS
S S nsp p v

The surface integral in (2.15) is

V f ,. dS - ns, dS .(2.17)

P p
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Sufficient continuity conditions for (2.16) are

(V + V )(V + V )* is piecewise continuous with respect tox x, and continuous with respect to t

and x, (2.18)

(V +V)a 0 on S

Sufficient for the continuity of (2.17) is that

VY* is continuous with respect to t and x and (2.19)piecewise continuous with respect to C

Because *(t,x,9) - g( -)(t, ), we may express the continuity conditions in
terms of 8(9-x) and ;(t,) as follows.

Sufficient for the continuity of first order spacial derivatives of the
averaging integral is that (see Eq. (2.14))

V*(t,&) is piecewise continuous with respect to and
continuous with respect to t,

g(.-x) is continuous , (2.20)

(-x) "0 on S

The integration formula (2.13) in terms of g and , if the conditions (2.20)
are satisfied, is

f OgV t(t,4)dV() a V f BSgdV + f ;n spdS • (2.21)V(x) 1V S
VW S p

The corresponding formula to (2.21) for functions * defined within the solid
grains is

f [1-013 V *(t.C) dV(C) V, f [1-0ig *dV-fg f*n dS
V(x) d 'V(x) S p d

(2.22)
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The continuity conditions (2.18) and (2.19) for second order derivatives are
in term of & and + as follows

V V&(t) is piecewise continuous with respect to 9
and continuous with respect to t

Vrg(&-x) is piecewise continuous (This suffices because (2.23)
is continuously differentiable due to the

first condition, Eq. (2.20))

S(Q-X) - 0 on S v.

The integration formula (2.15) is, if these conditions are satisfied,

f OgV V (t.4)dV() - V V f Og dV + f gV *n spdS + f (V g);n pdS
V(x) "1V(x) S p S (

p (2.24)

In summary, if the weight function g is chosen such that its first
derivatives are piecewise continuous, g > 0 in V, and g - 0 on Sv, then the
averaging integrals are continuously differentiable at least once if ; is
differentiable, and at least twice if is twice differentiable within its
region of definition.

2.2.4 Averazing Surface Integrals. Some flow properties are only
defined on the surface of the propellant grains, e.g., the burning rate, the
regression distance, and the surface temperature. The corresponding averages
are computed by surface integrals.

The weighted area of the grain surface that is contained In the averaging
volume is

SC- f g(s(t,n)-x) dS(n) , (2.25)
S p(t,z)

where s(t,n) defines the surface and n represents surface coordinates.
Contrary to the weighted averaging volume VG, the surface SG is not a constant
but a function of t and x.

Average surface functions are defined by

*(t,x) f - g(s(tn)-x);(t,n) dS(n) (2.26)

S (t,x)
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We discuss the differentiability of the surface averages by considering a
single grain. Let Its surface s(t,n) be defined in Cartesian coordinates by

X (tr)

s(t,n) - Y(t n) (2.27)
( i(tn)

Then the surface element dS(n) is defined by (Courant and John, 1974)

dS - Z(t,n)dn , (2.28)

where dn is the product of the differentials of the components of n,Z~t~) (det[( 39 T() ]8s 1/2
t'n) dot) , and Wan is the Jacobian matrix of the

function s(t,n).

The contribution of the grain to the weighted grain surface is according
to Eq. (2.25)

n2

SG, - ff g(s(t,n)-x) Z(t,n)dn . (2.29)
n1

The time derivative of SGI is

(S -f (-Vxs)Os Z dn +f g dn + f gZ dC] C-- I2 0

v

The integral in the last term in Eq. (2.30) is to be taken over the
intersection C of the grain surface s with the boundary Sv of the averaging
volume. If we assume that g - 0 on Sv then the integral is identically zero,
and we do not have to specify conditions for aC/at.

Sufficient conditions for the right-hand side of Eq. (2.30) to be a
continuous function of x and t are
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as is piecewise continuous with respect to n
anat and continuous with respect to t ,

g W 0 on Sv  1 (2.31)

Vxg is continuous, with possible exception of
isolated singular points ,

Vx - 0 on Sv .

The first condition in Eq. (2.31) is satisfied if the grain surface has almost
everywhere a normal. The next two conditions on g(E-x) are essentially the
same as encountered before in the discussion of volume averages. The last
condition on g is new, and it needs to be introduced if as/at is not equal to
zero and the intersection sS v has a finite area. (See the comment to Eq.

(2.6).)

Next, we consider the spacial derivatives of SGi• One obtains according
to Leibnitz type rule

V (SG)f Vjg Z dr +If g Z dC1 . (2.32)
a es v  a

The right-hand side of Eq. (2.32) obviously is continuous if the conditions
(2.31) are satisfied.

If the averaging volume contains several grains then SG is the sum of the
individual SGI . The sum is continuously differentiable if each of the grains
satisfies the first condition in Eq. (2.31), and g satisfies the other three

conditions.

We now turn to the surface average function *(tx), defined by
Eq. (2.26). We notice that * is a continuous function of all its arguments,
if the conditions (2.31) are satisfied and the surface function *(t,n) is
continuous with respect to time and piecewise continuous with respect to n.
We assume that # possess these properties and reformulate Eq. (2.26) as
follows

(sGi Z( S dS). (2.33)
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The time derivative of the left-hand side of Eq. (2.33) is

Lt - h (SO) + (SG) . (2.34)at at

The first term in this expression is continuous under our assumptions.
Therefore, also the second term (and 3f/at) is continuous, if the time
derivative of the right-hand side of Eq. (2.33) is continuous. The
contribution of each term on the right-hand side of Eq. (2.33) to the time
derivative is, via Eq. (2.30)

R t- f  (-Vxg)j Zd + f g Z dri +
Spi Spi (2.35)

+ f gj dn +[ f g*ZdC] It
Spi spinsv

Rti is a continuous function of x and t if in addition to the condition
(2.31) * also satisfies the condition

is a continuous function of t and a piecewise (2.36)
at continuous function of n.

Because * and (SG)t, in Eq. (2.34), are continuous functions if (2.31) and
(2.36) are satisfied, these conditions are sufficient to insure that *(t,x) is

continuously differentiable with respect to time.

In order to investigate the spacial differentiability of (t,x) we
differentiate Eq. (2.33) with respect to x. On the left-hand side we obtain

L -v(s) + (SG)Vx . (2.37)

On the right-hand side of Eq. (2.33), each sumand produces the expression

X -f (VXs) j Z dn + [ f g; Z deV . (2.38)

pi 5pi ()S

RX1 is continuous if the conditions (2.31) are satisfied. Because V (sr.) is

continuous, the conditions are sufficient for continuous differentiabIlity
of 4 with respect to the spacial coordinate.
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Second order spacial derivatives of surface averaged quantities do not
enter the governing equations. Therefore, we do not formulate existence
conditions for these derivatives.

2.2.5 Differential Equation for Surface Averages. All surface averages
satisfy a differential equation for material properties. We shall derive the
equation in this section.

let U(tx) be an arbitrary velocity vector and let g satisfy the
conditions (2.31). Then one can combine Eqs. (2.30) and (2.32) obtaining for
the sum SG of all individual SGi.

a(SG)+U7 (SG) - f Vzg.(Y Z di + f g-- din 0 (2.39)

rtxS f)S a

The integrals on the right-hand side are taken over Sp, i.e., over all grain
surfaces contained in the averaging volume.

A corresponding formula can be derived for the product (SG) 0 from
Eqs. (2.34), (2.35), (2.37), and (2.38) with the result

a ((SG) #) + Uv ((SG) *) - f (Vxg).(U - -) j Z dn +WE x s a

p (2.40)

+ df g;1dil +f g Z d •

p p

Next, we eliminate the derivatives of SG between Eqs. (2.39) and (2.40),
obtaining the differential equation

at SG at G9a xp p (2.41)

Sp

The first integral on the right-hand side of Eq. (2.41) is by definition the
surface average of a/at. The other two integrals are assumed to be small and

neglected for Interior ballistics problems. We notice that both integrals
vanish if a - on the propellant surface, i.e., if the property * is
identical for all grains. Also, the term 11-as/at can be assumed small, e.g.,

if all grain, have the same velocity U and do not burn, because Ms/3t is equal
to the sum of the grain velocity and surface regression velocity. The
term aZ/at is sero if the grains are not burning.
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If we neglect the last two integrals in Eq. (2.41) and use Eq. (2.26) to
define

* 1
S'C f a dS(rn) (2.42)

S p

then the differential equation, Eq. (2.41) simplifies to

t+ V <;> ,(2.43)
t

where <;> is a model for $.

For the velocity U one choses an average grain velocity, assuming that by
this choice one of the neglected terms can be kept small.

2.3 Regions of Definition of Averages

In this section we describe regions of definition of the average

functions. In principle, the averaging volume V can be of any shape and
size. However, in order to preserve a cylindrical symmetry of the averaged

quantities, the volume V, the weight function g, and the reference point x
associated with the location of the volume, all must be chosen with certain

symmetry properties. Instead of trying to formulate a general averaging
volume with the desired properties, we give two examples of admissible

averaging volumes.

The simplest example of an averaging volume is a sphere with the
reference point x in its center and a weight function that depends only on the

distance from its center. Let the diameter of the sphere be t.

Another example is an orthogonal circular cylinder with the reference

point at its center and with an axis parallel to the axis of the gun tube. To
be specific, we assume that the height of the cylinder is 21/3 if I is the
diameter of the cylinder. In this example, the weight function depends on the

radial as well as on the axial coordinates within the cylinder.

In both examples, the quantity £ is equal to the largest diameter of the
averaging volume. In general, we may assume a characteristic
length A associated with any particular averaging volume. The size of the

volume and, therefore, the size of L, is restricted by two requirements.
First, the averaging volume must fit inside the gun barrel and, second, we
want it to be larger than the largest grain in order to insure that gas is
present within every averaging volume. Tat B be the largest diameter of a
grain and let DSu n be the inner diameter of the gun tube. Then in the two

examples . ast satisfy the conditions
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(D p)Max < I, < (D sun) mi n  .(2.44)

Similar restrictions one would obtain for the characteristic length of any
averaging volume. We assume that tp and Dgun are such that the inequalities
in Eq. (2.44) can be satisfied by a margin if I is properly chosen.

The position of the averaging volume inside the gun gube is restricted.
If a constant averaging volume intersects a boundary, then the sum of the gas
volume fraction a, as defined by Eq. (2.3), and of the corresponding particle
volume fraction is not equal to one. Consequently, the definition of averages
by Eqs. (2.2) through (2.5) cannot be used if a non-zero intersection occurs,
and the location of the averaging volume is restricted to positions without
intersections between the averaging volume and boundaries. (See also Section
4.6.) This means that the reference point x cannot be moved arbitrarily close
to all boundaries. If the averaging volume is a sphere with the
diameter ., then x is restricted to locations that are at least 1/2 away from
the breech, the walls, and projectile base. In the second example (cylinder),
x may be located at points that are at least £/2 away from the tube walls
and £1/3 away from the breech and from the projectile base. Consequently,
because of the finite size of the averaging volume, none of the averaged
quantities are defined in the boundary regions. If the grain diameter p is
large, then the regions where the averaged quantities are not defined can be asignificant part of the interior of the gun tube.

In the remaining regions, the porosity a and all averages pertaining to
gas properties are everywhere defined by Eqs. (2.3) and (2.4). respectively.

Average properties of propellant grains are defined by Eq. (2.5). The
definition provides a value for the average function only if a < 1, i.e., if
there are grains within the averaging volume. The limitation also holds for
surface averaged quantities, defined by Eq. (2.25). The surface averaged
quantities are grain properties and they are defined only if there are grains
within the averaging volume.

The weighted number m of grains in the averaging volume is defined by

-(tx) - VG (1-0)/v p(d) , (2.45)

where d is the average regression distance of the grains and v (d) is the
corresponding grain volume, given by a correlation function. ?Particulars of
this definition are discussed in Section 4.2). According to the definition, m
is indeterminate in regions without grains, begause A is not defined in those
regions. We notice, however that a + 0 and V x a 0 as x moves to a position
where the avejaging volume contains no grains. Therefore, we may define a
continuation a a 0 in regions without grains. With this extension, m is
defined in all those regions where gas properties are defined, i.e.,
everywhere, except in boundary regions.
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2.4 Averaging Weight Punction

The averaging weight function g(y) is defined inside the averaging volume
V and on its bouodary Sv .  It has the following properties (see Sections

2.2.2, 2.2.3, and 2.2.4)

g>O mnV

g i0 onS v  , (2.46)

Vg continuous in V with possible exemption of isolated
singular points

Vg-O onS .

Next, we give examples of functions g(y) that satisfy these conditions
for the two examples of averaging volumes mentioned in the previous section.
let y - E-x, i.e., let the point of origin of the coordinate vector y be at
the center of the averaging volume. (In both our examples the center coincides
with the reference point x.)

If V is a sphere with the diameter X, then we define

8(y) .(2+n)(3+n)(4+n) - j2 , for - y 4 L/2 (2.47)

with an n > 0. The weighted averaging volume VG is for this g(y)

2 4 ( 3
VC- fg dV 4v f g(y)y dy -j w (-) (2.48)

V 0

As a second example we chose a cylinder with the diameter t and
height 21/3 . Let r and z be the radial and axial coordinates within the
cylinder, with the point of origin at the center of the cylinder. Then we
define

I _Izhl-+9 m -JIl
g(r,z) = (2+u) (2+m) (3+n) LI / 1 r ''n (2.49)
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The weighted averaging volume VG is for this choice of g

/3 X/24 4 3
VG f g dV- 4wf f g(r,z)r drdz - (I , (2.50)

V 0 0

i.e., equal to the volume lvi of the cylinder itself.

In both examples, we have weight functions with a maximum at the center
of the averaging volume. The functions are continuous but have gradient
singularities. The weight function for the spherical averaging volume has a
singular point at the center of the sphere. The second weight function has a
singular gradient along the line r - 0 and on the plane z - 0. Therefore, if
the flow includes phenomena that require surface averaging one should use a
different weight function for the cylindrical averaging volume. (For volume
averaging, piecewise continuity of Vg is sufficient.)

The following two weight functions have no singularities. They are
chosen such that the weighted averaging volume is the same as before, i.e.,
equal to the volume of a sphere with diameter X.

A weight function example for a sphere is

2
g(r) 7r- &cos (1r--) + 1] . (2.51)2_ 6ir6

A weight function for the cylindrical averaging volume is

g(r,z) - w (cos + 1] [cos + 1] . (2.52)

Numerous other examples can be constructed, e.g., based on the functions

g(r) 1(2.53)

or

r_ 14"n
g(r) - [cos (1 1/2)  (2.54)

and corresponding for the dependence on z. Particularly, functions of the
type (2.53) with large m and small positive n have properties that are
desirable according to Section 4.2.1.
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3. CONSERVATION EQUATIONS

The mathematical description of a two-phase flow field is composed of two
sets of local conservation equations (one for each phase), a set of local
constitutive relations for each phase, and interfacial or jump conditions

which relate locally the two phases. As in other two-phase models of interior

ballistics, all chemical rections are excluded. Burning of the grains is

represented by a transfer of mass, momentum, and energy from the solid phase

to the gas phase. Furthermore, the effects of body forces on both phases are

assumed to be negligible. By averaging the local conservation equations

according to the definizions and formulas determined in Section 2, and by

using the local interfacial conditions, we derive the coupled set of average

two-phase equations. The details of this procedure are given in this

section. The average equations in vector form are derived in three space

dimensions and time. The governing equations for cylindrically symmetric flow

in cylindrical coordinates are listed componentwise in Appendix A.

3.1 local Equations

3.1.1 Local Conservation Equations. The flow field is assumed to be

composed of two disjoint phases: gas and solid grains. The gas is assumed to

be compressible, viscous and heat conducting. The local conservation

equations for the gas are the Navier-Stokes equations (Tsien, 1958, pp. 3-16)

-0 , (3.1)at

3r() + V.(Piu) - - Vp + v-n (3.2)
at(32

2T,+ V.(p--) - - p V-u + t- - Q (3.3)
at(33

where , e, and u are the density, specific internal energy, and the velocity
vector, respectively. The constitutive laws for the viscous stress tensor i,
the heat dissipation function 4,, and the heat conduction vector Q are

2 2

2 ) v. )2(3.5)
2p E:E + (X -~ - V)(35

Q- K VT ,(3.6)
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where

i-0.5 [Va+(Va)] (3.7)

and A, ), i are the shear viscosity coefficient, the bulk viscosity
coefficient and the heat conduction coefficient, respectively, that may depend
on the local temperature T. The local pressure and temperature are given by
equations of state of the for p - (,e) and -(,).

Each solid grain is assumed to be incompressible (the density of a grain

p - constant) but deformable. The local conservation equations for the solid
phase can be expressed in a form similar to those of Eqs. (3.1) and (3.2)
(Prager, 1961):

W +V.(P u) - 0 (3.8)

Wt (P u) + .P u u) it.1 (3.9)

where u is the local velocity vector of the grain. For our purposes, the

solid phase stress tensor R represents the total stress within the solid

grain. A constitutive law for R could be based on Hooke's law. Although the
local angular momentum of the grains could be significant, it is assumed that
the average effect of the angular momentum is small and can be neglected.
Consequently, the local conservation equation for the angular momentum of a
grain is omitted.

3.1.2 Local Interfacial Conditions. The interfaci-l conditions relate
the two disjoint phases. The interface between the gas and solid is
considered a singular surface across which mass, momentum and energy is
transferred. The conditions that are valid on the interface can be expressed
as (Truesdell and Toupin, 1960):

- - -; p W (3-
na-p(u -u )- n P (uu P) ,(3.10)

sp 2 p

nep~ u )s + U-) + -Q n;-U(3.11)
ssp

Osp
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where u is the local interface velocity, n is a unit normal, and Q is the

local h:R~t conduction vector within the grain.

The local interface velocity u pis defined in terms of the local

regression rate aof the grain surface

where a >0 and nsp is the outward unit normal to the grain with respect to
the gas.

3.2 Averagina of the local Conservation Equations

3.2.1 Derivation of the Average Gas Continuity Equation and Poroity
Equation. To derive the average gas phase continuity equation, we multiply
Eq. (3.1) by (tEg-),integrate over the averaging volume V(x) and obtain

V(x) a

(3.14)

+ f S(tA)g(E-z) Vg.~t~)~,) dV(&) - 0
V(x)

Using formulas (2.9) and (2.21) with respect to the first and second integrals
of (3.14), respectively, we have

f J gp dV + V1 x f Sgpu dV + f gs(p- ).n spdS - 0 . (3.15)
V V S

P4

By the definition of a volume averaged quantity (2.4) and the interfacial "m~s
flux condition (3.10), Eq. (3.15) can be written as

S(Cn(t'X)P(t'x)) + V.(a(t,x) FPJ (t,x))

(3.16)

VC f gu u,,)-np dS 0

S
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*

because p - p - constant and VG = constant. In Eq. (3.16) p is the average
gas density and the quantity Pu is the average of the gas momentum density
pu. We define the average gas velocity vector u as the ratio

u(t,x) = GM(t.x) " (3.17)

Using this definition of u, the local regression rate, defined by Eq. (3.13),
and the definition of the average surface function (2.25), we can rewrite the
average gas continuity equation (3.16) as

a- [a(t,x)p(tx)] + V-[a(tx)P(tx)u(tx)J = p SG(tX) d(t,x) • (3.18)

The derivation of the average solid phase continuity equation proceeds in
a similar fashion to that of the average gas continuity equation. Multiplying
Eq. (3.8) by (1-8)g, integrating over V(x), invoking formulas (2.10) and
(2.22), and using the definitions (2.5) of an average solid grain property,

and (3.13) of the local regression rate, we have

(vc(1-n)*) + v.(Va(1-a) - 3' g d dS - 0 (3.19)
S
p

Using the surface average definition (2.25) and the fact that p is a constant,
Eq. (3.19) can be written as

a (-) + V.[(1-a)u*] - d _ (3.20)

t VG "

Hence, for incompressible solid grains, the average continuity equation for
the solid phase, Eq. (3.20), is the governing equation for the porosity a.

We notice that, if p is constant or depends only on time, then the
average grain velocity u is given directly by Eq. (2.5). The different
defintion of the average u by Eq. (3.17) via the average momentum density
rp-u is advantageous when p is not constant.

The average gas continuity equation, Eq. (3.18), is coupled to the solid
phase by the source term p(SG/VG)a. As expected, the amount of mass added to
the gas phase is exactly the amount liberated from the solid phase. If the
grains are not regressing (burning), the average regression rate A and the
source term are zero. The surface average SG and the surface average
regression rate a are two new unknowns. To restrict the number of unknowns,
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is replaced by a correlation (denoted by <a>) which is obtained from

experiments (see Section 4.7.7). To understand the error involved in such a

substitution, we rewrite Eq. (3.18) as

*SG
[QP] + V. [apu] * 7- <(t,x)>

(3.21)
• sG [1 (t,¢(n)) ds(ri) <- tx>

SG+ p - [L f g~)x ~~~) Sn atx>
p

The bracketed term on the right-hand side of Eq. (3.21) is the error term and

is equal to

- d (t,T(ni)) f g(E(n)-x) dS(n) - <a(t,x)> (3.22a)
i sp i

by the mean value theorem for multiple integrals (Apostol, 1957) and where rt
is some point on spi. From expression (3.22a), the following inequality can

be derived:

f g dS(n) - <>I maxla(t,t(ni)) <(t,X)>l (3.22b)
S i
p

Thus, a sufficient condition for the error to be small is that the

fluctuations of the values of the local regression rate d over each surface

from the value of the correlation <> at point x are small. A common

expression for <> is giver, by Eq. (4.100). If the error given by Eq. (3.22a)

is not small, another correlation for <> must be used. In practice, the

error is assumed small and Eqs. (3.18) and (3.20) are written with d replaced
by <a>. Furthermore, an additional formal error could be introduced by the

modeling of SG. However, this is avoided by the definition of m in terms of
SG (see Section 4.7.8).

3.2.2 Derivation of the Average Gas and Solid Momentum Equations. The

average gas momentum equation is derived by multiplying the local momentum

equation, Eq. (3.2), by the function Og, by integrating over the averaging

volume V(x) and by applying formulas (2.9) and (2.21). The results of these

operations can be written as
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f Og ou dV -f g PUn *aUs dS + Vx r gpud

V S p V
P

+f gn puudS--V x f g  gdV+Vx f SgidV (3.23)
S V V
p

-f g (n p- p.i) dS
S
p

We use the definition of an average gas property (2.4) and the definition of u
(3.17) in Eq. (3.23) to obtain

at [a(t,x)P(t,x)u(t,x)] + V.[Q(t,x) rpuu (t,x)]

- - V [ f gp dV} + V.{V. f Ogi dV} (3.24)
V V

VG f g Inspi - nsp- H + nap"; [a -Uasp] al dS .

p

The term p-uu (tx) represents the average of the product p-uu. Because
the average quantities p and u are already defined, we can denote the
fluctuations of the values of the local variables from the value of the
average variables as

P (t.&) - ('t,x) - ot,&)

and (3.25)

- (tx) -u(t,

If we substitute formulas (3.25) into the integral representation of aF-,
we obtain

V f Og  uu dV - .puu + f Og _ dV (3.26)
V

The difference between the first term on the right-hand side of Eq. (3.26) and
the left-hand side, involves a volume average of the product of velocity
fluctuations. We define this difference as the turbulent stress tensor of the
flow. Thus, turbulence in this report is defined as volume averaged
fluctuations. The turbulent stress tensor HT models the quantity
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_ r ' dV Puu[ (3.27)
V

We shall not discuss particular turbulence models in this report. A model is

proposed in Gibeling at al. (1980). If we write the integral representation

of Fpu and apply the mean value theorem for maltiple-integrals (Apostol,
1957), we can rewrite Eq. (3.27) when Vgas is a connected set as

[u(t,X)U(t,x) - P,)t~,) (t,X) ,(3.28)

where lies in Vias and is different for each component of the tensor uu.

From Eq. (3.28), a good model of the turbulent stress tensor for compressible

flows is one which models the significant differences in the dyad of the

average velocities and the dyad of the local velocities componentwise. With

respect to the errors generated by the model R T in Eq. (3.24), we want the

errors in the vector

V{ an - [QPuu - a E-1u (3.29)

to be minimized by the model.

Substituting Eq. (3.27) into Eq. (3.24) and algebraically manipulating

the result, we have

a [apu] + V- [apuul - - aVp + V.(an) + V.(an

* SG*.r r15-tud,-['Jg~n p-n s.l)dS +pVa

S

+ P#~ [nG ud - ~ n *~ - )p n O dS p
SG sp sp)

P

sp(u- )U d: - SGA } (3.30)

IG f Insp dV-~ p
p

+ {v.[VG. fvg(puu-PU) aT 1 1
V

IV [IV- f Bgj dV - ai] I
V

V1
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where p and A are the constitutive models for the average pressure defined by

[Ifvg~dV]/[c* VGJ and the average viscous stress tensor defined by

[f8V$gfdV]/[a. VG], respectively. In general, it is simpler to model the

average pressure and viscous stress tensor than to actually integrate the

local constitutive laws. Each term in Eq. (3.30) which is enclosed by braces

is an error term. We now shall discuss each error.

The errors in the models p, H, H T' and those introduced by u<d> are

represented by the last four terms on the right-hand side of Eq. (3.30). If

Vgas is connected, the errors in the last two terms can be written as

v[-L f gp dV - ap] - V{c(t,x) [;(tp(x)) - p(tx)]} (3.31)
V

and

7 • [-L f OgW dV - an] - v.j(t,x)[ff(t,j(x)) - (t,x)]} , (3.32)
x V

where (x) are the mean value points in V gas(t,x) which, in general, differ

for p and for each component of the tensor H. The models p and R as well as

the errors (3.31) and (3.32) are discussed in Sections 4.7.1 and 4.7.2,

respectively. For the gas momentum equation, the best approximations for p

and II are the ones which minimize both, the differences in their values and

their derivatives.

The error in the turbulence model is discussed previously in this

section.

Using the definition of (3.13) the second braced term in Eq. (3.30) can
be w'ri.ten as

SG I u(t,&(,)) a(t,C(n)) dS()- u(tx) <a(t,x)>} (3.33)
i sPi

If both, u and , are functions of t only, then expression (3.33) is zero and
no error exists. When this is not the case, one can bound (3.33) using the

mean value theorem for multiple integrals by

Ip TI max lu(t,&(ii)) a(t,x) -u*(t,x) <(t,x)>i , (3.34) 2
i
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where n is different on each surface spi. Expression (3.34) can be bounded
by

* SG
P S I (t,x)maxu~t.md, -*(tx)i + lu(t x)IIa(t x)> (t,x) }

(3.35)

Thus, the error in replacing s fspgU a dS with u*<>consists of two parts.
One error involves the approximation of d vith <a> and is discussed in Section
3.2.1. The other term is small if the values of the local particle velocity
at the grain surfaces are near that of the average particle velocity at x;
that is if the fluctuations are small. If both terms are not small, then a

correlation of the fluctuations (U'A must be modeled and included in Eq.
(3.30).

The term

V-f [np° " )u - nsp (U.sp)u] dS (3.36)

P

can be rewritten using the mass flux jump Eq. (3.10) and regression rate
definition (3.13) as

p f (- -) dS (3.37)

S
p

or using the momentum flux jump Eq. (3.11) as

-1 [ (n * -n n);.H] dS (3.38)
p

On the interface between the gas and the particles, we assume either that the
normal stresses are equal (the intergrand in Eq. (3.38) is zero), or
equivalently, that the gas and particle velocities are equal (the differencein the integrand in Eq. (3.37) is zero). In the special case of no
burning a-0, the errut is zero. When the above assumption is not true, the
expression (3.36) must be modeled by a correlation.

From Eq. (2.21) with I = 1, we have the relationship Ii'

S7- f gns dS . (3.39)
P p
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Using the formala (3.39), we have the equality

f g[nsp - n s i] dS + pV
VS s

p (3.40)

" f g[nsp(P - p) - nsp-H] dS

p

We define the surface integral on the right-hand side of Eq. (3.40) as the
drag force. The drag force is modeled by the correlation D which is discussed
in Section 4.7.5. The error incurred by this approximation is

I f g[nsp4P -p) - u lp*f] dS - D(t,x)} (3.41)
S
p

This definition is consistent with Ishii's (1975) development but is
different from Gibeling et al. (1980) and Gough's (1974) which is defined in
terms of the surface Integral of the weighted fluctuation of the normal total
gas stress tensor; n sp.(0-I) - n sp(p-p). For the special case when the average

viscous stress tensor is zero (the inviscid two-phase model), our defini::ion
and those of Gibeling et al. and Gough agree. We recognize the fact that Eq.
(3.40) Is a formal definition which my not be realized in an experimentally
determined correlation. In such a case, the other effects would have to be
included in Eq. (3.40).

The derivation of the average solid phase momentum equation parallels
that for the average gas momematum equation. We multiply Eq. (3.9) by (l-O)g,
integrate over the averaging volume V, use formulas (2.10) and (2.22) and the
definition of the average of a solid grain property (2.5) to obtain

(ICC-Q¢t,,51 1" ' (t,xs ] + v. [ (1-Qt,xs) lpult,xsl

- V 0 I{. f (1-O)gI(t,&) dV} (3.42)
V

+$f g n.po(u-u sp)U dS-f 8 nsp. dS

p p

Because is a constant, [p-;t(t,x) pt,x) - p t,x).

By adding and subtracting V[(1-a)p], by using Eq. (3.39), and replacing n on

on the surface with its equivalent via the momentum flux Interfacial jump' p

condition (3.11), we can rewrite Eq. (3.42) as
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+ -1- f (1-0)gff dV + (1--a) P11
x V

n *pU-U )u dS (3.43)
S
p

VS sSIs
p

a gnp ap Sp ap
p

where I is the identity tensor. Eq. (3.43) can be rewritten as

[(-Mj~~ + V.[(1-.a)puI - (1-uQ)VP +

+ v.c- ] -K U* <a> + L DVG VG

+ g (n8p ka-U-s )aj - U sp d(S}sp) (3.44)

SS

p

+ {V.*(1-) (u L-J) - (1-u)

" V-[(TG f (1-8O)g HI dV + (1-~ (1-a)IfljI

+IG fanSGp- 5  i)d VGD

where A1 is the constitutive model for the average stress tensor for the solid
phase and represents

V
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and nT is the constitutive podel for the average solid phase turbulent stress

tensor. In analogy to H T9 aT models the dyad (see Eq. (3.27))

* * r-i 1 1
u(tx)u(t,x) - (t,x) f (1-)g u'u' dV • (3.46)LTUJ1".a V G V

We recall that by definition H denotes the total stress tensor for the solid
grain. The quantity defined by Eq. (3.45) is the difference between the

average total stress in the solid phase (the integral of (1-O)S/VG over the
averaging volume) and the stress caused by the average gas pressure (-pI).
The resulting stress is the stress caused by the grains themselves, for
example, by the compactification of the propellant bed. Consquently, we call
the expression (3.45), the average intergranular stress, and aI the average
intergranular stress model. As with the average pressure, viscous stress
tensor, and turbulent gas stress tensor, it is simpler to separately model the
intergranular stress, the solid phase turbulent stress, and the drag. The
errors incurred by these models are represented by the last three terms in Eq.
(3.44).

The remaining error terms in Eq. (3.44) (those enclosed by braces) are
the surface integral involving the velocity or stress jump, and the surface
integral representing the source term. These terms are discussed in the
derivation of the average gas momentum equation (see the analyses beginning
near Eqs. (3.36) and (3.33), respectively).

3.2.3 Derivation ot i.he Average Gas Internal Energy Equation. The
average internal energy is needed to compute certain quantities, e.g., the
pressure and temperature via the equations of state for the average
quantities. The average internal energy can be obtained in either of two
ways. First, by adding the local internal energy equation to the equation for
the local kinetic energy, an equation for the local total energy can be
written. Following a similar procedure to those given in Sections (3.2.1) and
(3.2.2), we then can derive an average total energy equation. Finally, the
average internal energy value is obtained as the difference between the
average total energy, and the average kinetic energy determined from the
average velocities. The second way is to average the local internal energy
equation, Eq. (3.3), directly. The former procedure is the most common.
However, we use the latter approach because several terms whith must be
assumed small or modeled by additional correlations can be avoided, and the
terms, which must be modeled, have simpler physical interpretations, and,
therefore, are easier to model. An example of a term that can be eliminated
by the second method but is present in the first is
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f 0(t.9 (-)[C, .C,) -(-x pCt,x)u~t,x).u(t,x)] dV

(3.47)

f Bgu'. dV
V

The non-negative expression (3.47) represents the average difference between
the local kinetic energy from the dot product of the average velocity. An
example of a term that can be odeled more easily in the average internal
energy equation is the dissipation term. In the average internal energy
equation, the term 4 represents the average conversion of viscous work by the
fluid into heat only. Whereas in the average total energy equation, the
term V.(II.u) models the average conversion of viscous work of the fluid into
two quantities, beat and kinetic energy.

The average internal energy equation is derived in a similar fashion as
the average gas continuity equation and gas momentum equations. We iultiply
Sq. (3.3) by ag, Integrate over the averaging volume V(x) and use formulas
(2.9) and (2.21) to obtain

a v  6,- - )dSav f8 Og dV + V- g u dV- fgnd
atV V 'Sp s (-sSp

- f Og v.i dV + f Bg I1 dV - V.7fg -dV (3.48)
V V

- f gQn sp dS .
S
p

We define the average specific internal energy a similar to the average gas
velocity, that is, as the quotient of the average internal energy
density r and the average mass density P:

W - (tz) (3.49)

Using Eqs. (3.13) and (3.49), Eq. (3.48) can be written, after some
manipulation, as
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(*pe) + V.(apeu) - - apY-u + at+ - V.(Q)

SGS
" P -r( e < > _VL f Qns

p

+ v[ -vPeu - a- aO- a,+ f (3.50)
VG [V 21"ucT

+ V.[aQ - f Bg dv] + [apV-u - - f BgPV.u dv]
VCVS V

S

P

where L, *T' and Q are the constitutive models for the average dissipation
function, turbulent dissipation function, and the average heat conduction,
respectively. The average energy release by the propellant during burning is
denoted by S(tx). The term apeu-r eu: - (I/VG)J8Og'p dV, in analogy to
Eq. (3.26). This term is zero if either e 0, or u - 0, i.e., if e or u is

a function of time only. However, in turbulent flows this term can be
significant. A model of the term as the gradient of the energy variable is
given by Cebeci and Smith (1974). In interior balllistics, the term is
probably large, because for moving and burning grains the extrema of
e and u' are likely to correlate. We denote the model of this term by QT"
The term fs (B .u SG)dS represents the average heat flux into the particle

sp
from the gal and is modelgd by the correlation .<;>. The models for
4 and *T' Q and QT' and a and <;> are discussed in Sections 4.7.3, 4.7.4, and

L4..8, respectively.
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We now can rewrite Sq. (3.50) as

(ape) + 7,(%peu) - -ap V-u + a#L + a#T -- ) - v.(aQT )

+ P a - <;>

+ I VL f 9g [.41(tg) - LYtI) - #T(tlx)] dV
V

- {VV-f Og[ Q(t,;) - Q(tx)] dV} - {Vo[(o eu - opeu) -
V

(3.51)

- {v f g[,(t.C-) - 4>] dS I
S
p

+ {1 f Bg[p(t,x)V.u(tx) - p(t, )V.i(tl)] dV}
V

VGS

where the terms enclosed by braces are error-type terms.

The first four error terms depend on a model and are discussed in the
appropriate model section (see Section 4). The remaining two terms can be
written by following similar analyses to those in the average gas momentum
equation derivation as

I Bg [pV.u - pV.4] dV - a(tx) p(t,x) [V-u(t,x) - VoU(t,Z(z))]
VC

(3.52)

+ 0(t,Z) V.u(tE(z)) [p(tx) - p ,¢x))]

and
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SG

Ip I G I Ie I <a> atd + d max te(t,x) -et,&(rniJi
i

where Z(x) is a point in V (Vsa s is assumed connected) and is a point on
the surface Sp.g

The error represented by Eq. (3.52) consists of two parts: the error
made by using the divergence of the average velocity for the divergence of the
local velocity, and the error made by using the average pressure correlation

for the local pressure. If both p and V.u were functions of time only, the
error would be zero. If the term is not negligible, then a correlation that
models the average fluctuations of pV-u from pV.u must be included. Most
often the term is neglected, but a model may be necessary in some turbulent

flows. The error generated by replacing the surface integral of gei/SG with
the product of correlations e<a>, Eq. (3.5.3), also consists of two parts.
The first involves the approximation of a by <a> which is discussed in Section
3.2.1. The second is small if the fluctuations are small of the local
internal energy from the specific internal energy of the gas at flame
temperature, 8. In practice, both errors are assumed small. If not, a

correlation which models the fluctuation of ;a from e<A> over the surface of
the grains must be included.

3.2.4 Derivation of the Surface Average Equations. On the surface of

the particles, the average normal regression distance I and the average

surface temperature I can be defined according to the definition (2.25),

where d and T denote the local values, respectively. According to Section
2.2.5, the variables A and I satisfy the differential equation (2.41) so that

the average regression distance equation is

+ u - <a> + { f g( "- <a>) dS }
3t S9 d

ps+ d ui u )-,, lVxg dSI (3.54)
Sp ,!

SG f (3 -a kd}

S
p
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and the average surface temperature equation is

+ u.VT - <b + c f g( - <b) dS}

SG S d
P

Sp

where u =- <d> is the correlation for the regression rate, and (b ist8h

the corr lat on for the rate of change of grain surface temperature.

The last three terms in each of the Eqs. (3.54) and (3.55) are error
type terms. The first error terms in Eqs. (3.54) and (3.55) are the surface
averages of the fluctuations between the local values and its corresponding
correlation values of the regression rate and surface temperature,
respectively. The regression rate term is discussed in Setion 3.2.1 and
similar error estimates and comments can be made concerning the surface
temperature term. The remaining error terms involve fluctuations from
formally defined averages. The last terms in Eqs. (3.54) and (3.55) involve

fluctuations of d and T from their average values, respectively. Because the
integrands of these surface integrals include other terms, these integrals are
not surface averages of fluctuations, and, thus, are not necessarily zero.
The other set of error terms include the product of the fluctuations of the
local interface velocity from the volume average particle velocity u with the

fluctuations of T and d from their average values. As before, the integrals
involving these products are not surface average integrals. If the
fluctuations are small over the surface of all the particles, then the terms
can be neglected. Such cases occur when the regression distance and/or the
surface temperature of all the grains are equal. If these surface integrals
represent significant contributions to the rate of change of the variables,
correlations for them must be formulated and included in the governing
equations (3.54) and (3.55).

3.3 Summary and Discussion of the Conservation Equations Without Error Terms

In this section, we will list and discuss the equations derived in
Section 3.2 without error terms. We are aware that some of the neglected
terms may be significant in some flows. In such cases, it (they) can be
appended to the governing equation(s) and modeled. A good way to decide
whether a term should be neglected or included in a set of equations is to
compare the accurate solution of the equations with data from well-defined,
carefully done experiments. Furthermore, we realize that some of the
constitutive laws and correlations quite possibly can be coupled to each other
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and terms in the governing equations could be grouped differently. Thus, the
formal and physical meaning of some of the constitutive laws and correlations
can change. Therefore, the form of the equations, correlations, and
constitutive laws for interior ballistic applications listed in this report
should not be considered as final.

The porosity equation (3.20) (the average solid phase continuity
equation) can be written as

F (1-0) + V.[(1-) ] - , (3.56)

where the source term is given by

=SG

rI MM <a> .(3.57)

The average solid phase momentum equation (3.44) expresses the conservation of
the solid phase momentum density, and is

(l-u)pu] + V.[(1-u)puu] - (I-M)Vp + (1-M); Astress

(3.58)

+ (-OP Adrag Pur,

where

(1-U)PAstress =V.(1-)n + (' 1-a)RTI , (3.5%)

and

(1-u)pAdrg r-LD . (3.60)

The average gas phase continuity equation (3.21) is

r (ap) + V.(apu) - Prl (3.61)
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The average gas phase mmentua equation (3.30) expresses the conservation of
the momentum density and, with the definition of drag (3.40), can be written
an

T (ewPu) + 7- ( Ouu) = - Vp + ap ArVise + O Aturb

(3.62)

stuI-('-'m)p Adrag

where

ao AVse V.(afl) , (3.63)

and

a AAturb ' V.(CalT) (3.64)

The average %,is phase energy equation (3.51) expresses the conservation of the
gas phase incvrnal energy density, and is I

- (peo) + V.(epeu) - - epV.u + of + al 1 + per1  , (3.65)

where

1 +  ' (3.66)

and

' al ,, - .(aQ) -V<;> -,(A T ) . (3.67)VCV
The term contains all the models for tie heat dissipation functions and the
term 1 contains those for the heat conduction within the gas and to the
particles, and the turbulent heat flux.
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The governing equations for the surface average regression rate (3.54)
and for the surface average surface temperature (3.55) are

+ u.V d <b ,(3.68)

and

A u. + - <b (3.69)

Because the left-hand sides of these equations represent material derivatives,
one can interpret the equations as state equations for the surface material.

SG
The source term is modeled by - <d> which appears in every volume

averaged equation. Recalling the definition of the source term

SC a(tx) f adS, a0 * (3.70)
VG- VG S

p

we see that the model must be zero when no particle within the averaging

volume at point (tx) is burning (regression rate a is zero). When no
particles exist within the averaging volume we want the value of the source
term to be zero. This is reasonable because for the case of uniformly
regressing particles, the Integral in Eq. (3.70) approaches zero as the
porosity approaches one. Ntrthermore, t~e value of the model must be always
non-negative. Comparing Eq. (3.61) and p times Eq. (3.56), we see that value
of the average mass flux per volume to the gas phase is exactly that being
taken away from the solid phase within the averaging volume. The average
balance candlso be seen in the momentum equations and involves the momentum
flux model Pur 1 . The drag force per volume, D/VG, is also balanced on the
average In the momentum equations (3.58) and (3.62). We note that the model
for the drag force D should be zero when no particles exist (a-l) in the flow
because then the drag force Eq. (3.40) is zero (S has zero surface area).
Appropriate types of average stress tensors are also included in the average
momentum equations. For the gas phase, Eq. (3.62), the average viscous stress
tensor it and average turbulent stress tensor II are weighted with respect to
the average volume of gas present. for the solid phase, Eq. (3.58), the
average, intergranular stress tensor 11 and average solid phase turbulent stress
tensor I are weighted with respect to the average volume of solid phase
present and are grouped together. The igjernal energy of the gas phase, Eq.
(3.65), is augmented by the source term per . The appropriately weighted heat
dissipation functions # L and 4T (the contribution from turbulence) are grouped
together. The average work done by the gas pressure is denoted by -pVu and is
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weighted by the porosity. The average heat flux between the gas and the solid

is represented by S <e>. The correlation (e> should be positive when the
temperature of the gas is higher than that of the solid, negative in the
opposite case and zero when the temperatures are the same or when no particles
exist in the averaging volume. The average heat conduction in the gas is
modeled by V-(aQ). The turbulent heat flux vector is modeled similarly
by V.(aQT). The last three terms are grouped in one term .. The surface
averaged equations for the average regression distance (3.61) and surface
temperature (3.69) have non-negative valued right-hand sides represented by
the correlations <b> and <b , respectively.

The limiting case of no particles within a region is of particular
interest in interior ballistic applications because such regions do exist
inside a gun tube. The other limiting case of no gas does not exist in our
applications and, thus, is of no practical interest. In the case of no
particles (a-1), the set of conservation equations greatly simplify. The
source terms are zero and the drag and interface heat transfer terms are also
zero. However, it is important to notice that, first, the gas phase equations
do not reduce to the local equations (3.1) through (3.3). The simplified
set (a-1) differs in form from the local equations because it includes the
turbulence terms, that is, V.(T ), at_, and 9.(QT). This fact reminds us that
the resulting set of equations IS stiEi a set of average equations for a
finite averaging volume V. Secondly, even if the averages of all the products
of fluctuations were zero (no turbulence), then the set of equations for the
gas flow would have the same form as the local equations, but the solutions
would not be the same in general. This is so, because the quantities p, u,
and e are averaged, and their initial and boundary conditions are not the same
as the initial and boundary conditions for ;, u, and e in general. Thirdly,
if we let the averaging volume go to zero in the simplified set
(with a-i), the turbulence terms would be zero because the fluctuations are
averaged over the averaging volume which has zero volume. In this
case (a-I and V(x)+O) the averaged equations reduce in form to the local
equations and the initial and boundary conditions should reduce to the local
conditions. Thus, the solutions of the two sets would be Identical.
Fourthly, in the case of a-i, the equations for a and , Eqs. (3.68) and
(3.69), are homogenous (<> - <b - 0) but a value of and i can be computed*!
from these equations if u is defined. Although these values would be
physically meaningless, they allow the solution to be computed numerically
everywhere without tracing the internal boundaries of gas and mixture.
Because these internal boundaries cannot be predicted ahead of time in a two-
dimensional flow field, this provides a distinct numerical advantage.
Fifthly, the average solid phase momentum equation is identically satisfied
when a-1. Thus, the components of the vector u cannot be determined from Eq.
(3.58), and the mmerical advantages discussed with respect to 3 and I are

lost. In fact, when an implicit numerical algorithm is used to solve Eqs.
(3.56) through (3.69) directly for the variables p, a, up u, u , e andyit
can be shown that the matrix equation which must be solved for a new time
level of values is singular (the rank of the matrix is deficient) when a-I.
To avoid this situation, we can algebraically manipulate the porosity and
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solid phase momentum equations into a non-conservative form where au/at has a
coefficient one. Then the components of u can be defined everywhere. Another
advantage of solving for the values of u*, 1, and t directly fro, their
governing partial differential equations when a-l is that their values should
be continuous at a-1 if the equations approach a non-singular form at a-i.

In Section 4.1, 4.2, and 4.3, we discuss better forms of the partial
differential equations and another choice of dependent variables for numerical
treatment.

4. GOVERNING EQUATIONS

4.1 Basic System of Governig Equations

A system of conservation equations for average flow properties was
derived in Section 3. Oae obtains an equivalent system of differential
equations by solving the conservation equations (3.56) through (3.69) for the
time derivatives of the dependent variables. Tet the ensuing system be called
governing equations of the flow. It consists of the following set of
equations

, 2

t v.(Pu) - [(i - a)v. - (u - u).V(i - a)J + (P2) r2

at

a s - . IV u + r + + Ipt P 'p2 p'1 1'

au - (u.V)u -I qp dr + A

atp a p ' A A +
3u pu -- -U drag visc + turb'

au +*)j* j +A .(4.1)

- v-.((--)J + r2at u rag stress

ad * *

The system is closed by a nuamber of correlation models that will be discussed
in detail, in Section 4.7. Presently, we merely give a short exposition of the
corresponding terms in Eq. (4.1). The listed arguments of the correlation
functions are only representative, Indicating the most obvious dependences.
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The actual models may depend on fewer or on more arguments. Also, all models
depend implicitly or explicitly on the averaging volume and on the averaging
weight function.

The equations of state enter the system in form of a relation for the
pressure, viz.,

p - p(pe) , (Pa) . (4.2)

The mass source due to the phase change by combustion Is represented by

a V(d)
r2 .. (1 ).*<> , (1/s) , (4.3)

Vp(d)
p

where w define (1-n)p (d)/v (d), and vp(1) and spJ are the volume and
VC p p

surface correlations, respectively, for propellant grains with the regression
distance Z. The quantity <a> represents the regression rate correlation.
Generally it is a function of the type

<> - <d> (P,Iu - ulap/at) , (m/8) . (4.4)

The heat dissipation ts modeled by the function

0 ., (u,Tr,,u,d) , (W/i 3 ) , (4.5)

where T(p,e) is provided by the equation of state correlation. The heat
conduction is represented by the function

1 Y (T, VT, V.VT, <b) , (W/U3) . (4.6)

The last argument of I in 5q. (4.6) is the rate of change of the grain
surface temperature, 4ich my be modeled, e.g., by

Id db (T,T,lu-ul), (K/c) . (4.7)
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The term Adrg represents the acceleration due to the drag between gas

and particles

Adrag - Adrag ((u* - u),3,T), (m/82) • (4.8)

The velocity governing equations contain three more acceleration terms.
They are, the acceleration by the laminar viscosity

A - A (T,Vu,V.Vu,m) , (ls/2 (4.9)
viec visc

the acceleration due to turbulence

Aturb " Aturb (T,Vu,V.Vu,...) , (m/s2) (4.10)

and the acceleration due to intergranular stress and solid phase turbulence

Astress m Astress ( *,d,Vu .... , 2 • (4.11)

The system of governing equations, Eqs. (4.1), is for numerical solution
more advantageous than the system of conservation equations (3.56) through
(3.69) because none of the Eqs. (4.1) become identically satisfied as m+1.
This permits one to carry out the calculations throughout the interior of the
gun tube without tracking the boundaries of regions with a - 1.

We can further improve the equation system by selecting a new set of
dependent variables. The choice of the new variables and the corresponding
new system of governing equations are described in Sections 4.2 and 4.3,
respectively.

4.2 Choice of Dependent Variables

4.2.1 Particle Number Function. If the source term r2 is computed using

Eq. (4.3), then one can expect numerical difficulties as vp(3) approaches
zero. Interpreting the equation physically, it is plausible that 1 - v ,

so that r vanishes at the limit. Poever, because a and 3 (and, C

consequently, vp(3)) are separate variables, their numerical values will, in
general, approach the corresponding limits at different times and locations.
In a computer program, the situation requires special safeguards to prevent
overflow.
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The special programing can be avoided if the number of particles is
introduced as a dependent variable. This can be done by different
approaches. In one a proach, one assumes that the governing equations,
Eqs. (4.1) for a and d, and the source term correlation (4.3) hold exactly.
Then the number of particles, m(t,x), can be introduced by a formal definition
in terms of already defined functions. In a second approach, one avoids the
use of the correlation (4.3) and defines m(t,x) concurrently with the particle
volume function v (3) such that the equation for a in the ejuation system
(4.1) is satisfied approximately. Finally, one can define m(xt) by a
specific "reasonable" formula and then seek to determine a corresponding
function v (3) such that the equation for a is approximately satisfied. Eachp
of the approaches requires some approximations. The last approach has the
advantage that it provides guidelines how to chose the particle volume
function v p().

We start with the first approach and define a in terms of a and vp(3) as
in Eq. (2.45) by

* */p

m(tx) - VC (l-a)/v (d) • (4.12)

The two governing equations for a and 3 in Eqs. (4.1) are, if the definition
of r2 by Eq. (4.3) is used,

( -___v.((l-aSu) - Cl-a) (d)

v p(d)

and (4.13)

ad -t u.Vd + <b1

Next, we express a in terms of a and vp using Eq. (4.12), and obtain

* =
V *,

The expression (4.14) is substituted into the first Eq. (4.13). After simple
manipulations, whereby the relation

(d)

dd
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is assumed, one obtains from the system (4.13) the new system

am *
at-v.<mu ,
t aU

(4.16)

at I Vd + <b

Thus, one can replace the two governing epuations (4.13) by the two

equations (4.16) and the relation (4.14). If m is used instead of a as
dependent variable, then the source term r 2 in the equation system (4.1) iscalculated by

r2 V8 < (4.17)

instead of using Eq. (4.3). The expression (4.17) has no numerical
singularities. In addition, the new Eqs. (4.16) are simpler than the
previously used set (4.13). Physically interpreted, the first Eq. (4.16)
means conservation of the number of particles, independently of their size,
whereas the second equation governs the average size of the particles,
independently of tbeir number in the averaging volume.

The weak point of the described formal introduction of m(t,x) (the first
approach) is that a and the governing equation for m contain inaccuracies that
depend on the quality of the formula (4.3) for the source term r2. In order to
make the definition of m independent of these inaccuracies, one can define m
concurrently with vp(a) and a p() by the relation (4.12), which we rewrite in
the form

m(t,x) V() f (1-0) g dV (4.18)
V

the Eq. (4.15), and

m(tx)Sp(3) f g dS - Sc . (4.19)
S

The Eqs. (4.15), (4.18), and (4.19) are consistent in the sense that Eq.
(4.19) is a consequence of Eqs. (4.15) and (4.18).
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The exact expression for the source term r 2 is

rd dS- S . (4.20)2 VG" VG

Therefore, if Eq. (4.19) holds

r V -(d (4.21)

If we also use the exact average value i instead of the correlation <a> in the
governing equation for 3, then one obtains from these relations and from the
last two Eqs. (4.1) by formal manipulation as above

at

(4.22)

ad
7F- u.Vd -

Eqs. (4.21) and (4.22) are derived without any simplifying approximations for
the source term. When the equations are incorporated into the equation system
(4.1) for numerical solution, then the average a will, of course, be replaced
by the corresponding correlation <>.

*

The weak point of the second approach is that the two functions m and vp
with the desired properties do not exist in general, and, therefore, one has
to use functions that satisfy the Eqs. (4.15), (4.18), and (4.19) only
approximately. The non-existence can be seen, e.g., by considering the ratio
Sp/vp, which according to Eqs. (4.18) and (4.19) is equal to

p(d)/Vp(d) - f g dSlf (1-0) g dV . (4.23)

The right-hand side of Eq. (4.23) obviously depends not only on the average
but also explicitly on t and x. Even in the special case where all particles* *k

are equal, i.e., d d - constant, the ratio depends on the position of the
grains, i.e., explicitly on t and x. On the other hand, if g is a constant,
then Eq. (4.23) can be, indeed, a function of a only, and a proper function
v (1) might be found. (Actually, g can be only approximately a constant, see
Sgection 2.4.)
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Because the Eqs. (4.15), (4.18), and (4.19k cannot be satisfied exactly,
one might as well define, as a third approach, m(x,t) by a reasonable formula
and then seek such a function vp(a) that satisfies the above mentioned
equations approximately. (The other possibility, to choose v (a) and then
define a by Eq. (4.18) amounts to the definition by Eq. (4.123. The
corresponding * has undesirable limit properties when some grains in the
averaging volume are reduced by combustion to zero.)

Either of the following two formulas define functions m(t,x) with
reasonable limit properties:

E .L fg dS} , (4.24)
i-I Spi SiV

a r I fSdV} . (4.25)
i-i pi ViV

In these equations, m is the number of grains or grain parts in V, s, are the
surface areas of the grains, Si are their surfaces, v are the magnitudes of
their volumes, and V, are their volumes. The contribution of a grain that is
reduced to zero volume is g(it) - x), where ti(t) is the location of the
grain. When all grains are reduced to zero, then either of the formulas
produces

(tx) - E g(CI(t) - x) . (4.26)
iI

If all grains have the same finite size, then the formulas reduce to
Eqs. (4.18) and J4.19), respectively. Finally, if g is constant than the
contribution to m of each grain that is completely inside V is one, and the
contribution of a grain partially in V is less than one, in accordance with
its location. Only for constant g, and all grains located inside V, the
function m is independent of . Therefore, the factorization as postulated by
Eqs. (4.18) and (4.19) can be best approximated if the weight function is
constant over most of the averaging volume.

f a is defined by either of the Eqs. (4.24) or (4.25), then one may
select the volume correlation v p() to fit the choice of *. The surface area
correlation sp() is then obtained by the formula (4.15). The selection of

V p() is discussed in Section 4.7.9.

4.2.2 Pressure logarithm and Entropy. The equation system (4.1)
contains two thermodynamic quntities as dependent variables, namly, the

density a and the specific internal energy a. one can replace this pair of
variables by a different pair of thermodynamic quantities and replace the
first two equations in Eq. (4.1) by corresponding governing equations for the
new pair. The variables can be chosen such that the new system of equations
is better suited for numerical treatment.

196



First, we notice that up to six equations contain the gradient of the
pressure. The handling of the gradient terms can be simplified considerably
if the pressure p itself is chosen as a dependent variable instead of p. The
replacement reduces the total number of terms in the equation system.

Second, one may replace e by another variable, e.g., by the specific
entropy a, the specific enthalpy h, or the temperature T. These choices do
not simplify the equations. The number of terms does not change if a is used
instead of e, but it does increase if h is used instead of e. Chosing T as a
dependent variable, one obtains the most complicated equations.

Based on these considerations, we have chosen s as a second thermodynamic
variable. First, it does not complicate the equation system. Second, s is
proportional to the logarithm of the temperature, whereas e is proportional to
the temperature itself. Therefore, if the flow contains large temperature
variations, its representation in terms of s is much smoother and more
amenable to numerical differentiation. (One can expect large temperature
variations in certain interior ballistics problems.)

The relation between s, p, and T is for Noble-Abel gases

s - A1 n(T) - A2 Ln(p) (4.27)

with constant A, and A2. The Eq. (4.27) suggests that q-=n(p) would be an
even better choice than p as the other thermodynamic variable. If q is a
function of p only, then this replacement does not introduce any new
complications in the governing equations. Our final choice of thermodynamic
variables is, therefore, the specific entropy s [J/(kg.K)] and a pressure
logarithm function q, which we define as

q(p) - q1I[n(p/p) + 1] , (Pa) (4.28)

with constant q, and p1.

The first two equations in the system of governing equations (4.1), if
expressed in terms of a and q, are f

- - u.Vs B + Hr + (o + Y)
4

(4.29)

u.I e H. r (o + Y)
q q q
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where

1

S[(a + p) (e+p/]

r=n r -a p <a> (4.30)

and

=p(p,.s) d
Pq = ap dq

ap(ps)

(4.31)

3e(ps) dp
Sq = p dq 

I
= ae(ps)
as as

2 =
Tn the derivation of the equation for q, we used the relationship 9 2 a -pp

which can be obtained from the second law of thermodynamic@ (Hand, 1910). In
Eq. (4.31), dp/dq - p/q1 by Sq. (4.28), end the derivatives of the
thermodynamic functions are modeled by the equation of state correlations,
described in Section 4.7.1.

4.3 Final System of Gbvernlns Rutlons

The goveruing equations (4.1) can be expressed as follows in terms of the

new set of variables that were Introduced in Section 4.2.
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a -u.Vs + B + r + (o + Y)

t pT

uVq - (Vu + - ) + 4-e-e R)r -- =(+Y)
at T q Pq

au - V-- uAr+-

r- - (u.V) u V - ( -- Adrag + Avisc + Aturb

.- drag stress
P p

at

with

I - [(1-u) Veu - (u-).V(1-u)],

* *

1 V p (d) a/VG

(4.33)

1 *

uP VG p

VThe partial derivatives P, Pe and *qare defined by Eq (4.31). The
dervatve -dp/dq isequet pq 1 i q is the pressure logarithm defined

by Eq. (4.283.

Models of the various correlation terms in Eq. (4.32) are discussed in
Section 4.7. Their physical meaning is as follows: r represents the mass
source due to combustion, # represents the heat dissipation, I contains the
heat conduction terms, e(s,p), T(s,p), and o(s,p) are thermodynamic state
functions, Adrag is the acceleration due to drag, &visc is the acceleration

*due to viscosity, Aturb is the acceleration due to turbulence, Astress is the
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acceleration due to intergranular stress and solid phase turbulence, <> is
the regression rate correlation, d> is a correlation for the heat conduction

between gas and particles, A is e at flame temperature, Sp(3) is the average
surface area of a single grain, and v () is the average volume of a single

grain. The variable <b enters also he first two equations (4.32) as an
argument of the term T.

The correlations are defined in terms of volume or surface averages.
Therefore, the models of the correlations should be different for different
averaging volumes and/or different weight functions. However, because
experimentally determined correlation models are usually reported without
reference to any averaging, their relation to specific averaging procedures
are difficult to determine. Therefore, the influence of their relationship on
the overall accuracy of the interior ballistics model has not been

established.

4.4 Regions of Definition

According to Section 2.3, the average quantities describing gas
properties are defined at all interior points of the gun tube, except for
boundary regions the shape of which depends on the averaging volume. The
average quantities are the density ap, the energy density ape, and the
momentum density vector apu. Consequently, all other quantities that are
defined in terms of these quantities are defined in the same regions. Such
quantities are, e.g., e, u, s, q, T, etc. The porosity a has the same region
of definition. The grain number function m also can be defined in the same

region, if one uses the extension m - 0 if the averaging volume contains no
grains.

Average quantities describing grain properties are defined only at
reference points for which the averaging volume conU ins grains; Therefore,
the set of average conservation equations for (1-a)pu, (1-a)p, d, and T is not
defined in regions without grains (see Section 3.3). By a reformulation of
the conservation equations, we obtained in Section 4.3 an equivalent set of
governing equations (4.32). This set has no singularities at a - 1 and it
enables one to calculate nominal grain properties at all interior points where
the gas properties are defined. Therefore, one can extend the definition of
average grain properties as follows. The grain properties are defined by the
averaging integrals (see Section 2.2), if the averaging volume contains
grains. rn other regions, the grain properties are defined as the solution of
Eqs. (4.32). In interior ballistics problems this definition amounts to an
interpolation of *, 3, and I across regions without grains. When the grains
have been reduced to zero volume, one can still calculate their motion, which
now corresponds to a so-called "dusty gas" model. In such a gas, the dust
follows the gas flow according to a drag law, but it does not influence the
gas flow itself. Using the set (4.32) as governing equations one obtains
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regions of "dusty gas" where > 0 and v (d) = 0. In regions with a - G and
v (3) > 0 the equations provide an interpolation of u, 1, and I in space and
tfme between regions with grains.

In the boundary regions discussed in Section 2.3, none of the average
quantities are defined and, consequently, the differential eqs. (4.32) have no
meaning in these regions. Strictly speaking, one should provide boundary

conditions for Eqs. (4.32) at the boundaries 1/2 away from the tube walls
and 1/2 or 1/3 away from the breech and projectile, if the average volume is

defined as a sphere (2.47) or cylinder (2.49). The meaning of the solution of
the equations in the boundary regions is not obvious if one prescribes
boundary conditions on the solid boundaries instead. Section 4.6 contains a
discussion of the boundary condition problems.

4.5 Initial Conditions

Typical local initial conditions for interior ballistics problems are
constant state conditions over the entire region. Because averaging of a

constant produces the same constant, the initial averages in most cases are

simply equal to the local values.

Deviation from a constant initial state typically involves either a
porosity a that is not uniform, or a non-uniform grain size, i.e., a non-
uniform 3. In these cases, one cannot use the local values of m and a as
initial values. Instead, the initial profiles must be computed by averaging

the local values, whereby the same averaging volume V and weight function g
are used as for the correlation models and boundary conditions.

In regions where initially the grain number m is zero one has to

extropolate or interpolate the values of *, 3, and 1. The initial grain
velocity is normally identically zero and one can use u M 0 for the
extrapolation. Likewise, the initial grain surface temperature is usually

constant, and the same constant can be used for extrapolation. The regression
distance may not be constant if different sizes of grains are loaded in
different regions. In such cases, one has to use a Comon sense extrapolation
that produces a smooth initial surface 1(0,x).

In the boundary regions, "correct" initial values cannot be specified for
reasons explained in Section 4.4. The proper choice of these initial values
depends on the method of treatment of the boundary regions. However, one can

assume that any reasonable treatment will produce uniform values, if the local

function values are uniform. Therefore, one may specify in the boundary
regions the same uniform initial values as in the interior region. If the
initial conditions are not uniform, then one has to design such an

extrapolation of the averages to the boundary that is consistent with the
treatment of boundary conditions.

201

'n nn nu t,- I



4.6 Boundary Conditions

A theory that could provide guidelines for the formulation of boundary

conditions for averaged equations has not been developed. Therefore, interior

ballistics calculations usually are done with plausible ad hoc assumptions
about boundary values. In this section we shall outline the requirements for

a boundary condition theory and suggest a possible approach to the formulation

of such a theory. Because the theory has not been developed, we shall also
discuss ad hoc boundary conditions.

Discussing boundary conditions for averaged differential equations in

confined volumes, we have to distinguish between two boundaries. For the

purpose of the present discussions, we call them the outer boundary and the
inner boundary, respectively. The outer boundary consists of the solid walls
of the volume. In interior ballistics the solid walls are the tube walls, the
breech, and the base of the projectile. The inner boundary is the limit of
validity of the averaged differential equations. As discussed in Sections 2.2

and 4.4, the inner boundary is located a finite distance inward from the outer

boundary. The magnitude of the distance depends on the size of the averaging

volume. If the averaging volume is a sphere with the diameter L, then the
inner boundary is located X/2 away from the tube walls, breech, and
projectile. If the averaging volume is the cylinder described in Section 2.2,

then the inner boundary is £/2 away from the tube walls and E/3 away from the
breech and projectile base. Let the region between the outer and inner
boundaries be called the boundary region, and the region inside the inner
boundary be called the interior region.

Classical theory for the discussion of necessary boundary conditions,
well-posedness, and existence can be only applied to the inner boundary.
Gough (1974) presents some of the discussion, implicitly assuming that the

conditions on Soth boundaries are identical. The assumption is permissible if

the size of the boundary region is small compared to the size of salient
structures of the flow field. Because the size of the boundary region must be
large compared to the size of propellant grains (see Section 2.2), it is
generally not small compared to, e.g., the gas boundary layer. For interior A-
ballistics flows, therefore, one cannot assume that bound-.y conditions on the

inner and outer boundaries are identical.

Physical boundary conditions, such as u = Uwall, are only given for the

local gas phase functions on the outer boundary. The only physical boundary
condition for the particles is that no single particle can penetrate the
wall. In addition, one may also formulate collision conditions for single
particles impacting on the wall, i.e., on the outer boundary.

A boundary condition theory for averaged equations has to bridge the gap
between the outer and inner boundaries. It should provide a complete set of
boundary conditions for the average quantities on the inner boundary in terms
of the local physical boundary conditions on the outer boundary.
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One possible approach to the problem is by construction of a continuation
of the solution into the boundary region. If such a continuation is
established, then one has reduced the problem to the formulation of boundary
conditions on the outer boundary only. The simplest method to obtain a
continuation is to define it as the solution of the same differential
equations that are valid in the interior region. Then one needs only
conditions on the outer boundary and disregards the existence of the inner
boundary. This is the usual approach in two-phase flow calculations. It has
the deficiency that one has no guidelines how to formulate the boundary
conditions for the continued functions, because they are neither the local
functions nor the average functions.

A more promising continuation may be obtained by changing the definition
of the averages such that it includes the boundary region. This requires that
the averaging volume V has a shape that depends on the position x of the
reference point. The conservation equations of Section 3 are derived under
the assumption of a fixed size and shape of V. The averages defined for a
variable V satisfy a different set of differential equations. The
continuation Into the boundary region could be computed by solving Eqs. (4.32)
in the interior region and the new set in the boundary region, and by matching

both solutions at the inner boundary. The boundary conditions on the outer
boundary then represent conditions for averaged functions and can be modeled
accordingly.

Because a theory of the described type is not available, we now formulate
ad hoe conditions that may be used for the differential equation system

(4.32).

The local boundary conditions for the gas are: u w uwall, a condition

for the temperature prescribing either T - T.11 or aT/3n a (T/an) all, where
n is the normal to the wall, and the mass conservation equation. In the
spirit of interpreting the solutions of the differential equations as
averages, one would not directly use these conditions as boundary
conditions. Instead, some interpolation is needed that reflects the
averaging. We propose the following approach. 4

Let t/2 be the distance between the inner and outer boundary and let c be
the thickness of the gas boundary layer. Tet # be a function with prescribed
local boundary value ;wll and ni be the unit normal to the inner boundary,
pointing outward with respect to the interior. We then use the following
boundary condition on the outer boundary for gas properties

~ouer -[~(inei~+ ( i n~)~ + c;,llII+4 c) . (4.34)
outerb 2 I ~nnerb Vinerb'i 1 2 2;el/ + • C.4

Because X is larger than a particle diameter (see Section 2.3), the boundary

value on the outer boundary, when computed by Eq. (4.34), will approach the
local boundary value only if the particles are small compared to the thickness
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of the boundary layer (r0A/2). This may be the case, e.g., when the flow of
wear reducing additives is investigated. If the particles are large compared
to the thickness of the boundary layer (1/2>>e), then the outer boundary value
given by Eq. (4.34) approaches an extrapolated value from the inner
boundary.

Eq. (4.34) may be used to determine the boundary values of u, and T
or 3T/n. The average gas continuity equation may be used to close the set of
boundary conditions for gas properties.

The formulation of a boundary condition for the average particle velocity
presents a dilemma. On one hand, the condition should prevent the particles
from penetrating the wall. On the other hand, the average particle velocity
at the outer boundary may very well point into the wall, merely indicating an
accumulation of particles within the averaging volume. As an ad hoc measure,
we disregard the second possibility and suggest for the average particle
velocity at the outer boundary the following formula. Let bDE be the solution
obtained from the differential equation system (4.32) at the outer
boundary, u al be the velocity of the wall, and nall be the unit normal to
the wall pointing outward. Then the outer boundary value of * is

Uouterb UDE - nwall max(,(uDE - wall).n all) . (4.35)

The resulting uouterb satisfies the condition

(Uouterb - uwall)-nwail r 0 (4.36)

which prevents the particles from flowing through the wall.

The quantities , 2, and I are computed by solving the corresponding
governing equations at the outer boundary.

4.7 Models of Correlations

4.7.1 Equations of State. For the derivation of the average equations
in Section 3, we used the averages of two thermodynamic quantities, namely,
the density p and the specific internal energy e. The conservation equations
contain two other thermodynamic quantities, the pressure p, and the
temperature T. (The latter enters the heat conduction term and may be also
used in other correlations.) They were assumed to be related to • and p by
equations of state, i.e., by
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p - p(pe)

and (4.37)

T - T(p,e)

Generally, one uses, in Eq. (4.37), the same functions that hold locally.
This introduces errors in several terms of the average conservation equations.

As an example, let us consider the error term in the average momentum
equation. The error made by approximating the volume average of the local
pressure by the first equation in (4.37) is from Eq. (3.31)

C V [cdr~x)(P(t,) - p(tx))] (4.38)

As discussed in Section 3.2.2, to minimize the error by a proper choice of the
function p, we need to minimize the errors in the functional values as well as
in the gradient values. However, the pressure function enters the equation
system in various places and different combinations. Therefore, the use of
the local equations of state is probably as good as approximation as any.
Correspondingly, one also uses the local equations of state when the entropy s

is introduced as a dependent variable.

All thermodynamic variables (temperature, pressure, density, energy,
entropy, and enthalpy) are completely determined in terms of two variables if

two "equations of state" are provided by postulate or measurement. Using the
two given equations, all other relations can be derived from the laws of
thermodynamics, which provide the following three systems of differential
equations (Hund, 1950):

ac (pT)v T

(4.39)

. T (ap(p,Tr) 2/ p(p,T))

(c and cv are the specific heats (J/(kg-K)) for constant pressure and volume,

respectively),
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e(pT) TLr p(p,T) p)

3p I 3
(4.40)

a}e(pT) = c ,

3T v

and

as(p,T) _1 3p(p,T)
3P P 2 3Tp

(4.41)

as(pT) 1
3T T -v

An equation of state that is often used in interior ballistics is the

Noble-Abel equation

p(pT) (4.42)p~pT) 1 -rip

where R a 8.3143 J/(mol.K) is the universal gas constant, M (kg/aol) is the
3

molar mass, and n (m /kg) is the covolume. From Eqs. (4.39) and (4.42) one

finds that for a Noble-Abel gas

ev - cv(T)

and (4.43)

cp a cv(T) +

Therefore, in order to completely specify the gas, one has to provide, in

addition to Eq. (4.42), a temperature function cv(T). Alternatively one can

specify instead of cv(T) a function cp(T), or a function y(T) that gives the

ratio c p/cv - y(T). In the latter case, the specific heat functions are

I R

and (4.44)

0y(T) Rc T (T)-l K
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We assume that y(T) is constant, and obtain with this assumption the

functions e(p,T) and s(p,T) by integration of Eqs. (4.40) and (4.41). After
some manipulations, one can express the quantities of interest in terms of p
and 9, as required by the system of governing equations (4.32). The results
are listed below. TR and PR are reference values which determine the

integration constant for the entropy.

T(ps) - TR(j2) exp (y K

e -/ J/k (4.45)

P R T + nl- kg/m 3  ,

aT(ps) - T
ap T'T

(4.46)

aTr(p,s). 1 1

ae(P-s) =1i , 1
ap

(4.47)

ae(p.s) ._I T (
as Y

and

(4.48)

ap(p,s) . Y - (--1

The square of the sound speed is

2 2 2
a Y , /s . (4.49)
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The specific entropy, expressed in terms of pressure and temperature, is

s [-i- (P-) Y  ] , J/(kg.K) . (4.50)

5 My-iTR PR

4.7.2 Acceleration by Gaseous Stresses. The governing equation for the

average gas velocity in the equation system (4.32) contains the terms Avisc

and Aturb" The former term represents the acceleration due to laminar

viscosity. The latter term represents the acceleration due to turbulence. A

simple turbulence model is a Reynolds stress model with viscosity coefficients

depending, e.g., on temperature. Then the forms of Avisc and Aturb are
identical. We restrict our discussion to the term Avisc* More complicated

turbulence models are p,.'sible (see Gibeling et al., 1980), but will not be

discussed in this report.

According to Section 3.3, the viscous acceleration term is

A -1 V-(a]I) , (4.51)
Visc OP

where I models the gas volume average of the local viscous stress tensor i.

The local tensor is given in terms of the strain rate tensor E by (Tsien,

1958, p. 13)

.22
n 2 '-+ ( -2 ) trace (E) I , (4.52)

where and X are the shear viscosity coefficient and the bulk viscosity

coefficient, respectively. Both are assumed to be functions of temperature.

The strain rate tensor is defined by

.:x(V + (v ) ) . (4.53)

The modeling of the average viscous acceleration term involves models of

the average viscosity coefficients and a model of the average strain rate

tensor E.

The models of the average viscosity coefficients are purely empirical. A

convenient set of formulas is the following generalization of the so-called
Sutherland formula:
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T1 "5

*(T) - p + U T . Pa.s

and (4.54)

(T))I Pass

The generalization consists of the addition of the parameters u0 and Xo,
thereby including in the model the constant functions.

The average strain rate tensor E is usually modeled by applying the local

formula (4.53) to the average velocities. Then U is obtained by using Eqs.
(4.52) without the tildes and (4.54) with temperature T(p,e) calculated from

the average values of p and e. The approximation error is Eq. (3.32) divided

by ap, i.e.,

C - _ . g P(Z'p e- II(upe)] dV . (4.55)

The error part that comes from the replacement of ; and e by p and e is
probably smaller than the uncertainties of the empirical formula (4.54).
However, the error part that comes from the use of the average velocity in
Eq. (4.53), can be large because the formula involves derivatives of the
velocity and in a viscous two-phase flow the local derivatives can be quite
large. It is not necessary that the integration (4.55) cancels out locally
large undulations of the integrand. An empirical correction based on careful
experiments certainly could enhance the usefulness of the described model of

the viscous acceleration term.

4.7.3 Beat Dissipation. All the heat dissipation terms are denoted

by 0 and they enter the governing Eqs. (4.32) for the specific entropy s and
for the pressure logarithm function q. According to Sections 3.2.3, 3.3, 4.1,
4.2, and 4.3 the term 4 models

f V g  dV , (4.56)
V

where the local heat dissipation function is given by (Tsien, 1958, p. 15)

2 trace 2 + 3 2 (trace -2, /m3  (4.57)

is the local strain rate tensor, and - and -A are the shear and bulk
viscosity coefficients, respectively.
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Usually 0 is defined in the same fashion as the equations of state

(Section 4.7.1), i.e., by calculating a 0 with the same formula as 0, but
using the average velocities instead of the local velocities. The modeling of

the viscosity coefficients is discussed in Section 4.7.2. In Cartesian

coordinates, the formula is (Tsen, 1958, p. 15)

au1  3u 2 au 2

pT' pT 2 ax 3x 3

whereby summation over i and j is assumed.

Even without considering turbulence, Eq. (4.58) likely underestimates the
value of the expression (4.56) because local undulations will generally

increase the value of the integrand. If a difference exists between the

average velocities of the phases, then the local velocity gradients are

particularly large.

In order to estimate their effect, we compute the heat dissipation term
in a linear flow field superposed by an undulation. Particularly, we assume
the following velocity components in Cartesian coordinates:

u1  U +.- x +

u2 - u(x,y,z) , (4.59)

u3 - U(x,y,z) ,

where

u(X,y,z) -Usin (21 x) sin (-L' y) sin (-L' z) .(4.60)

The local heat dissipation for this flow field is

1+ 2 2 2 2 2 2 2

' +zz +22,y + 2* + 'y )

(4.61)
2 12

S 4 " XX 0yy zz
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where

SU 2 cos ( x) sin (k y) sin )2 + 2u

2w 2L L LL2

* 2w 2 sin (L x) coo (k y) sin (k-z)

L m 2 (n L L L

. 2 2, (, ,: 4,2,sin (k x) sin coo

Sxi M sin (2L 2z)

L-- sin (k (=. )) sin (-. y)
*y =-U2 1x sin (

L: L

L x) sin ( y- (y+z))

Next we assume that the averaging volume is a cube with side lengths nL
and that the weight function g is constant. For that case, the integral

(4.56) yields

1 4(Au)2 (AU 2 )2 W2 (5J ) (4.63)

The first term in the brackets in Eq. (4.63) is the contribution of the linear
field to 0. The second term is the contribution of the superposed
undulations. One sees that for Au/(uL) w U/L the contribution of the
undulations is abeot 40 times larger than that of the linear flow field.
Interestingly, the contribution of the undulations does not depend on the
number of periods in the averaging volume, but only on the amplitude and wave
length. The example shows that the usual approximation of 0 by the formula

(4.58) can be grossly in error.

A model of the contributions of undulations in two-phase flow due to he

difference between u and u can be derived in the same manner as Eq. (4.63).
To simplify the formulas let us chose the coordinate system such that the x-
direction coincides with the direction of u-u. Then the velocity undulations
may be approximated by

211- . . .



, u uu. sin (21.x) sin (2y) sin (k z)

mu2  1 0 (4.64)

Au3 =0

where D is the distance between the centers of the particles.

let a be the number of particles in the averaging volume. We associate
each maximum of the function ul with a particle. Then there are four
particles in an elemental volume D3 and a - 4V/D3 . Therefore.

D - (4V/m)1/3  . (4.65)

The contribution of the undulations (4.64) to the dissipation function is one
third of the contribution of the undulations (4.59) in all velocity
coordinates, as can be verified. Therefore, a reasonable model for the
contribution due to velocity differences is

<0> - Ty (u-u) V)2/3 i2 5 W/(kg.K) (4.66)

In a computer program, where a and V are not available, one can use in Eq.
(4.66) the quotient a/(VG) instead of m/V without changing the magnitude of

<#>. The correlation (4.66) probably gives only the order of magnitude of
the contribution due to velocity differences in the flow. However, it
certainly is better than the usual assumption <0> - 0. In relation to the
error term involving the dissipation function in Eq. (3.51), the function (0
approximates the error between the volume average of the local dissipation
function and the average dissipation function ;(E).

The models for the turbulent dissipation function varies widely. A
simple model for 0 T is one which has an identical form to i (Eq. (4.58)) but
with different viscosity coefficients. GibelinS et al. (1980), suggest a
model based on an algebraic relationship among a turbulent length scale,
turbulent viscosity, and turbulent kinetic energy.

The complete dissipation term that enters the governing equations is the
sum of Eqs. (4.58), (4.66), and the model for 0T

- () + <0 + >+ T W/(kg.K) (4.67)
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The approximation error is the difference between the expressions (4.56) and
(4.67).

4.7.4 Heat Conduction. The heat conduction term I enters the governing
equation, Eq. (4.32), in two places. The term itself models at least two
phenomena: the heat conduction within the gas defined in term of the average
quantities, and the heat conduction from the gas to the solid. Depending on
the model for the fluctuations of peu from peu, we also can have a turbulent
heat flux vector defined in a similar manner as the average heat conduction.
We shall discuss each of these models in turn.

Locally, the heat conduction within the gas is assumed to be governed by
Fourier's law

2  W/ , (4.68)

where K(j) is the thermal conductivity coefficient which depends on the local
temperature. The corresponding average heat conduction term in Eq. (4.32) is
a model of

a--T [- f Og  dV] - f- Og -) VT dV ] . (4.69)
VGVJ V

The volume average in expression (4.69) is usually modeled as Eq. (4.68)
without the tildes, that is, the average value of temperature T (obtained from
the average values of s and q by the equation of state correlations, Section
4.7.1), replacing the local temperature T and an average thermal conductivity
coefficient K replacing the local coefficient Z. The average thermal
conductivity coefficient can be modeled by a generalized Sutherland-type
correlation,

T1 .5

K(T) Ko + T 5 (a.K) (4.70)

An estimate of the error incurred by using the model instead of expression
(4.69) can be obtained as follows when Vsas is connected:

CQ. v .[ gQ dV - *Q] - - v.[ f OScVT dV Q-KVTI
V V

(4.71)Ve *;i %K
i. V.[ Vl -cV2],3
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where T- T(;,;) and k - (b) are mean value points of the Integrand.
Expanding Eq. (4.71) further one obtains

C- V[(%c-K) VT + nV(T-T)] (4.72)Q opT

and

ICQI max 1- T V.[l(-K)V' + acV(' -T)]l . (4.73)
V apT

The term involving the difference Z-w can be reduced if the coefficients

K' a I' and K 2 in the correlation (4.70) are chosen such that

K (T) 1 tf Og- dV .(4.74)
V

The term involving V(T-T) reflects the modeling error due to local undulations
of the gas temperature.

The heat conduction between the gas and the particles is represented in
Eq. (4.32) by a model of

- - f gQ.n dS g (4.75)
*pT VC S apT VC sp

P P

The integrand in Eq. (4.75) is the heat flux into the particles. We define

the surface averaged heat flux by

-- f ~V.n dS S V/m2  , (4.76)
sp

and rewrite expression (4.75) as

1 SO.
1o SG .(4.77)

'WT VO-

The quantity ; is modeled by experimental correlations which can have various
different forms. A relatively simple formula is (Gibeling et &1., 1980)

e>. - [h (T-11 + h (T-T)J , Wim (4.78.)
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where 4 is the average grain surface temperature. The coefficients hc and hr
in Eq. (4.78) model the heat transfer by conduction and radiation,

respectively. Gibeling et al. (1980), suggest the following expression for

the coefficients in case of spherical particles and Noble-Abel gas:

h ' K + 0.2 ,..__(:p2u! )111 W/(m2K) (4.78b)
c D 0 Y-1 M

p /Dp/2

where t is the diameter of the particles, and p is the shear viscosity

coefficlent (Section 4.7.2), and

hr - £ B (T4T) (T2+T2) , W/(U2K) , (4o78)

where e is the particle emissivity and a 1 = 5.67032.10
- 8 Wa -2 - 4 is the

Stephan-Boltzmann constant.

The model <> should be consistent with the model <b of the grain
surface temperature rate of change. The relation between both models is
discussed in Section 4.7.10.

The model of the significant fluctuations of u from pe (denoted by QT'
see Section 3.3) can have different forms. One model of the turbulent heat
flux vector, given by Ishii (1975) and Gibeling et al. (1980), is

S K T [VT - (T - T)] / (4.79)

where Ti is an average temperature on the interface (a function of T and 4
and KT is given by an algebraic formula involving an effective viscosity and
Prandtl number.

The heat conduction term I is the sum of the three described models,
i~e., -

a

gas particle turb

(4.80)

1 V.(McVT) 1 _<L> -- / t
*-pT aPT VG apT V'Qr , W(kg.K)
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4.7.5 Acceleration by Drag. The acceleration by drag between gas and
particles enters the governing equations (4.32) f or the velocities u and u.
The term is defined by (Section 3.3.)

A " 1 D (4.81)drag - uPi)p VG

where D models

1_f g[n P) - ne4] dS , (4.82)
VS sps

p

and i are the local pressure and viscous stress tensor, and p is the average
pressure. In interior ballistics applications, the term is modeled by
experimental correlations that are available for single particles (e.g.,
spheres) and for packed beds of particles. For situations between these

extremes one has to interpolate.

In order to see how the drag coefficient cD for a single sphere relates
to Adrag , we consider a situation where the u identical particles do not
interfere with each other. Then the absolute value of the drag force acting
on a single particle is

IFI ; If g[n 5 p(P-P) -n 4] dSIIFIs = sp.

m S
p 

(4.83)

VG
-;- (1-a) p JAdrag
m g

In terms of the drag coefficient CD, the force is (Schlichting, 1960, p. 15)

1 *2
IFI 2 cD I'-uI a , (4.84)

2 D p

where a P is the frontal area of the particle. Eliminating IFI between
Eqs. (4.83) and (4.84) one obtains

*

1 *2 a 1
IArl cD tu-ul a (4.85)drag' T CDp VG I-*

or, using Eq. (4.12),
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IA * 2 a l (4.86)

IAdrag1 T cD lu-ul 
4()

vp

The drag coefficient for a single sphere can be approximated by

cD - 24/Re + 0.4 , (4.87)

where

Re M lu-ul p D (d)fu (4.88)

is the particle Reynolds number and D (2) is the average particle diameter.
(About the approximation (4.87), see Kigure 1.5 in Schlichtin, 1960, p. 16.)

Substituting the expression (4.871 into (4.86) and observing that the
acceleration is in the direction of u-u one obtains for not interfering
spheres the Reynolds formula

a (di
•Uu p (0.2u-ul + 12 3 (4.89)A,.4eynold s- (-)

Vp (d) op(d)

For a packed bed one finds, e.g., the Ergun correlation (Gibelig et &I.,

1980, pp. 15 and 30)

p(rgun w U-u) * L (1.751u-Uql + 150(1-e) ( ) " (4.90)
v Md 3 a 2pD (d)

p p

In order to interpolate between both formulas one may assign limits for
their validity. For instance, one could assume that the dispersed sphere
formula holds for a > 0.9, and &ae compacted sphere formula holds
for a < 0.65. Then the acceleration term is

umJ[(c~ ynoi for a 0 0.9 , (

A 41(a-0.65) for 0.65<a<0.9 (4.91)drag fyod".(-a)rgn

Argun for a ( 0.65 •

The quoted liaits are arbitrary and say be changed, if experiments are
available. Also, other than Irgun formulas say be used, if experimental data
indicate a better approach.

217

A*Aft 0



4.7.6 Acceleration by Granular Stresses. Acceleration by granular
stresses enters the governing equations (4.32) for the particle velocity u.
The term is formally defined by (see Section 3.3)

Astress +. ( T (4.92)

The second term of Eq. (4.92) represents the acceleration of the
particulate phase by solid phase turbulence which may be modeled by a solid*

phase turbulent stress tensor R T" Because the density of the solid phase is
much larger than that of the gas phase, and the sizes of the propellant grains

are large, the turbulence of the solid phase is assumed negligible and K T is
set equal to zero.

In the first term of Eq. (4.92), the variable 11 models

- (1-6) g (H + pI) dV (4.93)
V

(see Eq. (3.44)). It is interprated physically as the effect of grain

interaction with grains. Without such an interaction, the stresses n inside
the grains would be equal to the negative of the surrounding gas pressure or
nearly so, and the acceleration term Ait.... could be neglected, except for
turbulence considerations.

Generally in interior ballistics, one makes two assumptions about the

model ; of the average integranular stresses. First, one assumes that it is a
function of a only and, second, one assumes that it is a diagonal matrix,
i.e.,

*e

H - I R (a) (4.94)
p

The second assumption means that the stresses have the effect of a pressure
that acts on the particles in addition to the gas pressure. With these
assumptions, one obtains from Eq. (4.92) for the acceleration

A 1 d R (a)] V(1--) (4.95)stress 1-a da pP

The derivative term in Eq. (4.95) is interpreted as the square of the sound
speed a in the dispersed phase, and Astress is expressed as
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*2 1
A - ) -V(1-a) . (4.96)

stress1-

The modeling of Astreas is reduced by these assumptions to the modeling

of a sound speed function a(a). The sound speed can be measured in packed beds
and in suspended particle flows, so that within a limited range the model can
be tested.

The function a(a) should increase with higher particle density (1-a)p ,
i.e., with decreasing a. Also, as a approaches one, the function should
approach zero. Let asp be the sound speed within a particle and let us a~suae
that for a - a. all particles touch each other, so that a(a.) - a . Let a(%)
become zero at a - a 2 1. Then a reasonable model for a(a) is

*~~ -a 2a-a foa< a2
ic ap 1 0 for ao < a< a

0- (4.97)
0 j for a2 4 a

In Eq. (4.97), the value a - a0 corresponds to a highest density (1-ao0 that
can be achieved by compacting the particles. If a - 0 then one assumes that
the particles can be crushed and compacted to a solid mass with the
density p. The last factor in Eq. (4.97) merely lets a approach zero as a
approaches a . Thus, one assumes that for a > a particle interaction can be
neglected. aibeling et al. (1980), uses a simifar formula in which a 0 and

0*
the second factor is set equal to one. Using that formula, one sets a(a) = 0
for a > a It seems that a smooth transition to zero, as provided by our
formula (1.97), is more realistic.

4.7.7 Burning Rate. The burning or regression rate directly enters the
governing equation for the regression distance I in Eqs. (4.32). The
correseonding term is defined as the surface average of the local regression

rate 3d/at - (sp -)nsp (see Section 3.2.1) and is approximated by A

<a> r Lf g 2 ds .(4.98)

S at
p

The linear regression rate can be measured, e.g., in closed bomb or
strand burner experiments. The experiments show a dependence of the burning
rate oan the gas pressure, on gas velocity (erosive burning) and on the time
derivative of the pressure (dynamic burning). Best established is the
dependence of the burning rate on pressure, which is modeled by the equation
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a B 0 + BIP2 (4.99)

with constant BO, B, and B2 . The dependences on the relative velocity lu-ul
and on the pressure change 3p/3t can be incorporated into the model equation
either as additive terms or as a factor. The siaplest model <d> is obtained
by neglecting these dependences and setting <d> equal to de. i.e.,

B 
2

<> - B + 'p . (4.100)
0 1

The largest uncertainty of this model comes from the experimentally
determined model parameters, and from the a priori assumptions that erosive
and/or dynamic burning is, or is not important. An averaging error is also
introduced by the use of the equation of state function p(s,q) in Eq. (4.100).
However, that error is likely to be negligible compared to the general
inaccuracy of the model function. These errors are included in the error
estimate (3.22).

4.7.8 Source erms. rn this section, we discuss terms in Eq. (4.32)
that are associated with the burning of the propellant. They are
characterized by the factor <>, which represents the regression rate
correlation and is discussed in Section 4.7.7. Because of this factor, the
source term are equal to zero if no burning takes place, and they represent
sources of mass, energy, and mntum if the grains are burning. In the
governing Eqs. (4.32), the terms have the common factor r and they enter the
equations for s, q, and u. The factor r models (Section 3.3)

P- S gu -u).n dS 1/s (4.101)
a p v p sp sp

and is defined by

r <l A> .(4.102)C[P VG

In Eq. (4.102), SG can be eliminated using the relation (4.19). The result is

r A <a> , (4.103)

as stated by Eq. (4.33).
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The approximation error in Eq. (4.102) is that of the correlation <A>
(see Section 3.2.1). rn the expression (4.103) one has, in addition, errors
associated with the representation of the weighted surface SG by the product

asp Because the representation is part of the definition of m (see Section

4..1), it does not formally introduce new errors.

Tje governing equation (4.32) for the gas velocity contains the source
term (u-u)r. The term models

' VL "  (u-u) g t(Us--).nsp dS , 2/s2 (- - f U*-u g ( -)-nI ds M/s(4.104)

The error in the governing equation caused by the model (4.103) is

i-P' f (u-u) g [(U -U).n I dS (4.105)
a pVG S sp sp

p

The error is zero if the grains do not rotate and all grains have the same
velocity.

The entropy governing equation (4.32) contains the source term Hr. The
term is derived under the assumption that the approximation

(Up-U).n dS - e f g ( --U).n dS (4.106)
S Ssp

p p

holds. Eq. (4.106) is indeed an identity if the local specific energy e of

the gas released from the burning propellant surface is equal to a constant
e. This is a common assumption in interior ballistics. The constant e is the

specific energy of the gas at "flame temperature", i.e.,

S I R 1

e _- Tflame g I J/kg (4.107)

where 8a is the standard acceleration 9.80665 m/s 2 and

I - T R/(gaM), a , (4.108)
p flame a

is the "force" or "impetus" of the propellant. (Sometimes also the product
g M (a2/ 2) is called the "impetus" of the propellant.)
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In some cases, a modeling of e may be better than the assumption of a

constant e. For instance, if the propellant contains a retardant then one

could assume that the flame temeerature is a function of the regression

distance and, consequently, a - e(a). of course, the modeling then involves

averaging errors, because the local e(d) would be replaced by a function e(A)
of the average 3.

The factor H is defined by

H - - [(e+p/p) - (e+plp)] , J/(kg-K) , (4.109)
T

i.e., H is the difference between the enthalpy of the gas emerging from the

flame and of the surrounding gas, divided by the gas temperature. The

approximations that affect this term are those of the equations of state (see

Section 4.7.1).

The source term in the governing equation, Eq. (4.32), for the pressure

logarithm function q has as a factor of r the expression (A-e-eH)/eq , where,

es(sq) and eq(s,q) are the partial derivatives of the specific internal

energy e with respect to s and q, respectively. The factor is derived by

formal manipulation and approximations involved in the derivatioa are the same

as discussed above.

4.7.9. Grain Volume and Surface. We recall the discussions in Section

4.2.1 about the definition of the grain number function m. The formal

definition of the average grain volume function v (a) and of the average grain
p*

surface function s (a) should be consistent with the definition of m. In this

section, we shall gisctss definitions that are consistent with Eqs. (4.18) and
(4.19), respectively.

For convenience, we repeat the pertinent equations and definitions in

this section. Our goal is to find such functions m, vp, and s p that satisfy
the followin6 set of relations

d(t,x ) f g g dS . (4.110)

S
* p

dv d)* -S(d) ,(4.111)

A p

m(tx) s (d) a I g dS , (4.112)
p S

p

m(t,x) v p(d) - f (1-0) g dV • (4.113)
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We found in Section 4.2.1, that such functions in general do not exist and,
therefore, suggested to define a by either of the following two equations:

a {*L dSa 1 (4.114)a-• fgdS
il Bpi SiJV

or

m f dV . (4.115)

i-I pi VinV

Once a is defined, then one can define either e or vp by Eqs. (4.112) or
(4.113), respectively, and find the other functon from Eq. (4.111).

The approximations involved are, first, due to the assumption that a, as
defined, is independent of 3. The accuracy of the approximation is improved
if the weight function g is constant over most of the averaging volume. A
second approximation is due to the assumption that Sp or v , defined by
Eqs. (4.112) or (4.113), respectively do not depend explicitly on t and x.
Again, an almost constant g may improve the accuracy of this approximation.

The modeling of the functions v and 'p practically is done at a limit,
assuming constant g, and identical particles. In this case, the functions
simply represent a single particle.

If there is a variation of particle sizes within the averaging volume,
then by either of the described formalisms one obtains an average that is
slanted towards the larger particles. Investigations of the significance of
this bias have not been done for interior ballistics problems.

4.7.10. Grain Surface Heating Rate. The grain surface heating rate
enters the governing equation, Eq. (4.32), for the grain surface temperature

*
S -VT + <b (4.116)

The term <> is the correlation model for

L f 2-T g dS , (4.117)
S
p

i.e., for the average rate of change of the surface temperature. The change
is related to the heat flux to the particles, e, discussed in Section 4.7.4.
Therefore, the model d> should be consistent with the model <;>
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Like the grain surface and grain volume functions, the surface
temperature model function is usually established by considering the limiting
case of identical grains, i.e., by treating a single grain. Typically, if the
grain has a simple geometry, one calculates the temperature field within the
grain corresponding to the energy transfer <;>. This involves the solution of
a differential equation and finding the corresponding surface temperature,
which, in turn, determines the energy transfer at the next time step. This
type of calculation is recommended if one is particularly interested in the
ignition process. After ignition, all heat transfer is assumed to be zero,
because then the energy flow phenomena are dominated by the combustion and the
associated heat release. The continued heating of the grains is assumed to be
of no consequence for the combustion.

In order to illustrate the relation between the heat transfer for the gas
to the particles, (4.77), and <b, we consider a very simple model in which
the temperature in each grain is assumed to be uniform. (The model is not
recommended for simulation of interior ballistics, but it shows the salient
features of the relation.) let c. be the specific heat ol the particle
material. Then the heat capacity of one particle is cnv p, (J/K). Therefore,
the relation between the energy transfer models 4> and <T> should be

p -( (4.118)

From Eq. (4.118) and expression (4.77), the model for the heat conduction
between the gas and particles can be written in terms of <b as

'particle - V [ p (4.119)

The Important result is the existence of a relation like Eq. (4.118)
between <b and 4>. It would be replaced by a different relation if the heat
flow within the particle were taken into account, as described above. In that
case, the expression in the brackets in Eq. (4.119) would be changed
correspondingly.
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5. SUMKARY AND CONCLUSIONS

Interior ballistics models are mostly based on engineering approximations
and insight, like Lagrange's model. Alternatively, one can assume that the
gas and particles locally satisfy all conservation equations and obtain the
model by an averaging process. In this report, we present a complete
mathematical derivation of weighted volume averaged equations including all
error terms, sufficient conditions for the necessary differentiability of the
average variables, and regions of definition of the average variables.
Initial and boundary conditions that are consistent with the volume averaged
equations are discussed. Correlations that are used to close the system of
partial differential equations are examined. Some of these correlations are
different than those commonly used in interior ballistic applications.

The average governing equations that are derived in this report model the
transient effects of viscosity, heat conduction, and turbulence in the
compressible gas phase; the ignition, intergranular stress, and burning in the
incompressible solid phase; and the corresponding interactions between the
phases, e.g., drag, heat transfer, and source terms. Turbulence is defined in
terms of volume averages and only elementary models are presented for
completeness of the report. In the average model, quantities appear that are
defined only on the surfaces of the grains. We show that these quantities
satisfy a general partial differential equation. The relationships between
the volume average equations and the local equations for individual phases are
discussed as the volume of the solid phase approaches zero and as the size of
the averaging volume approaches zero. Because these equations must be solved
via the computer, an appropriate form and choice of dependent variables for
numerical solution are discussed. Thus, this report presents a complete and
consistent mathematical model of interior ballistics for non-reacting, gas-
solid flows.

The exposition of the theoretical basis of averaged equations permits us
to draw the following conclusions:

First, the proper domain for averaging is a volume that is larger than
the propellant grains and that is smaller than the gun tube . Time averaging
is undesirable because of the rapid changes of the flow field and the moving
boundary (projectile). Infinite volume averaging is not admissible for
theoretical reasons, and so are surface and line averages.

Second, the average equations are valid only for cases where the
averaging volume consists of gas and particles or just gas and where the local
functions have no discontinuities within their respective domains. Therefore,
average governing equations are not suitable for describing flow& with shocks,
contact discontinuities, etc. On the other hand, by a proper formulation of
the governing equations, we obtain a system that can be solved numerically
without explicitly following the boundaries of regions without particles.

Third, the average equations are not valid in boundary regions.
Consequently, the formulation of proper boundary conditions is problematic,
and has not been solved satisfactorily. Also, resolution of interior
ballistics boundary layers based on volume average two-phase equations is only
possible in exceptional cases, when the grains are smaller than the typical
boundary layer.

225



Fourth, one-dimensional interior ballistics models based on volume
averaging are less problematic than two-dimensional models, because the
averaging volume occupies a finite thickness cross-section of the tube and is
large compared to the particles. The only problems with such models are the
formulation of boundary conditions at the breech and projectile.

Fifth, a mathematical basis for two-dimensional interior ballistic models
could possibly be obtained by an extension of the theory of average
equations. Such an extension can be done by generalizing to a variable volume
averaging or by using statistical averages instead of volume averages. The
first approach will alleviate some problems, but it cannot remove the basic
cause of problems in two-dimensional modeling: the particle sizes that are
large compared to the gas boundary layer. The second approach (statistical
averaging) has not been tried successfully for two-phase flows. There the
encountered problems are mathematical, requiring a major investment in the
development of the theory.
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LIST OF SYMBOLS

The list contains symbols that are frequently used in the report.
Symbols that are defined and used only locally are not Included in this list.

Function symbols in general indicate average quantitites. A tilde over a
function symbol is used to indicate the local value of a function. An
asterisk over a symbol indicates that it represents a property of the
propellant grains.

a - sound speed in gas, m/s

a sp - sound speed of particle material, a/s

a - sound speed of particulate phase, m/s

a - average frontal area of a particle, m2

Adrag - acceleration term due to drag, m/s
2

AErgun - Ergun correlation for Adrag, m/s
2

AReynolds - Reynolds correlation for Adrag3 r/s
2

Astress - acceleration term due to intergranular stress, m/s2

cv - specific heat capacity at constant volume, J/(kg.K)

c p - specific heat capacity at constant pressure, J/(kg.K)

- regression distance, a

d - stationary burning rate, m/s

<> - burning rate correlation function, m/s

8p - average particle diameter, m

e - specific internal energy, J/kg

A - e at flame temperature, J/kg

es, eq - partial derivatives of e, K and a 3/kg

<e> - correlation foI surface averaged heat flux into the
particles, W/m

E - strain rate tensor, 1/s

g - averaging weight function

H - specific enthalpy difference (Section 4.7.8), J/(kg.K)

I - identity tensor of second order
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S- diameter of averaging volume, m

* - number of grains in averaging volume

a - weighted number of grains in averaging volume

M - solar mass, kg/aol

ns - unit outward normal with respect to the gas on S

nsv - unit outward normal to Sv

p - pressure, Pa

pq - derivative of the function p(q)

Q - gas phase heat conduction, W/m
2

QT - gas phase turbulent heat flux, W/m
2

q - pressure logarithm function (4.22), Pa

r - radial coordinate, a

R-8.3143 J/(aol K) - universal gas constant

s - specific entropy, J/(kg.K)

p - average surface area of a single grain, M
2

S p - union of all grain surfaces in V

SG - weighted area of Sp, a2

SV  -.surface of averaging volume V

t - time, s

T - gas temperature, K

Tf lame  - flame temperature, K

- grain surface temperature, K

d> - correlation for rate of change of grain surface
temperature, IK/s

u - Sas velocity, a/s

UrlUU: - the radial, circumferential, and axial components of u,
3/s

u - particle velocity, a/s
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UrUeUz - the radial, circumferential, and axial components of u,
M/2

Usp - velocity of a point of S p, a/s

Vp - average value of the volume of a single particle, m
3

V - averaging volume

VG - weighted value of V, a
3

x - spacial coordinate, m

z - axial coordinate, m

Z - surface element metric

a - gas volume fraction (porosity)

B - phasic function (Section 2)

- ratio of specific heats

r - source term, (4.33) 1/s

rt I- SG<a>/VG, 1/s

r2  - r, 1/s

covolume in equation of state, m3 /kg

- thermal conductivity coefficient, W/(m-K )

- bulk viscosity coefficient, Pa.s

- shear viscosity coefficient, Pa.s

II - viscous stress tensor, Pa

11 T  - gas phase turbulent stress tensor, Pa

* - intergranular stress tensor, Pa

- solid phase turbulent stress tensor, Pa

- gas density, kg/a 
3

*3
P - particle density, kg/m3

P *Pq - partial derivatives ofp(s,q), (kg/m3) (kg.K/J), and8s q s2/a 2

* - function describing a gas property
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*- function describing a particle property

4 - dissipation term, W/(kg.K)

" 0 L - dissipation function, Wi/m
3

0 T - gas phase turbulent dissipation function, W/m
3

<0) - dissipation correlation term, W/(kg.K)

S - PTO, W/a3

(txF) - general function, Section 2

S- heat conduction term, W/(kg.K)

1gas - heat conduction due to gas conductivity, W/(kg.K)

Tparticle - heat conduction due to heat loss to particles, W/(kg.K)
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Appendix A

Governing Equations for Cylindrically Symetric Flows in Cylindrical

Coordinates.

This appendix contains a list of the governing equations in component

form in cylindrical coordinates for the case of cylindrical symmetry flow.

The subscripted variables denote the components of a vector and not the

derivative of these variables. All derivatives are written in a non-

abbreviated form. The listed equations are in a form which is compatible with

Eq. (4.32). The components of the gas average velocity and the particle

average velocity are

u -Ur, ue, u3) , (N/s) , (A.1)

uM(Urb ueUz) , (/S) , (A.2)

where the subscripts r, 8, and z refer to the radial, angular, and axial

coordinate directions, respectively. The components of the gradient of a

scalar f are

Vf - I3f)r, (se, •. (A.3)

The divt:gence of a vector F (Fr, Fe, Fs ) is

I 3(rFr) .z
V-F = .(A.4)

The independent variables are time t, radial position r, and axial

position z. The dependent average variables which are computed from the

governing partial differential equations are: the specific entropy s, the

pressure logarithm function q, the radial gas velocity Ur, the circumferential*

gas velocity u8, the axial gas velocit u_ the radial particle velocity ur ,

the circumferential particle velocity u8 , the axial particle velocity uz  the

number of particles within the averaging volume m, the regression distance 2,
and the surface temperature of the particles

The entropy equation is

as - + 2-B+Rr + + T(A.5)

r- z2 pT
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where p, p, T, H, r are given by Eqs. (B.6), (3.4), (B.2), (B.27), and (B.26),respectively. The expression for B is

B - a(r) u (--- ------- _(r r ~ -•+ (u -i (u -u (A.6)3r z 3z
and the porosity a is given by Eq. (B.). The dissipation function 4 is

PT() + T , 
(A.7)

where

3u 2 u 2 au 2 u au r  u u ur rz r 

z r 3r az r jj-f
[r 2 au 8u 2 au 2

aur  +- Uz 3(A8

+ X[-- + u 2
r r- H

and I*, A, <.), and 0 T are given by Eqs. (B.7), (B.8), (B.13), and (B.35),respectively. The heat conduction term Y is given by Eq. (B.15) as

,ga + Tparticle + Vturb 
(A.9)

where

1-(r- aT 3 3T

turb mTr3 mTT

(A.11)
a3 3Q a 3

ande are given by Eqs. (3.17), (B.14), respectively, and KTTi arediscue near Eq. (B.36). 
rp te
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The pressure logarithm function equation is

a(ru.) au e
'U ~iU u

at r 3r z az 8pr r az as T
a~q

+ L (e e- i) r + !- +)
3q 3q

where p, e, T, B, 4, R, r, 0, and I are given by Eqs. (B.4), (B.3), (B.2),

(A.6), (B.28), (B.27), (B.26), (A.7), and (A.9), respectively.

The radial gas velocity equation is

2
au au au u

r r r+2 -k.1 "5 -t -Ur - zz -r dq p 3r r rr

(A.13)

- (I-a)(Adragr + isc)r + (Aturb)r

where

(A a au u u au1 ct (2 r -Lr z +

vt r~ aZ)

(A.14)
au au U

+3- (r+ z + 2aw

and p, P, r, a, u, and X are given by Eqs. (B.6), (B.4), (B.26), (B.1), (B.7),

and (1.8), respectively. The radial component of the drag (Adrag)r is given

by the radial component of Eq. (B.20). The radial component of acceleration

due to turbulence (Aturb)r could be given by the radial component of Eq.

(B.34) which is Eq. (&.14) with 0 and X replaced by uT and XT.

The circumferential gas velocity equation is

aue  ue  u. UrUe  ,-

t r - 3r z az r u

(A.15)

--Q) (Adrag)e + (Avisc)e + (Aturb)
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where

(Ai a)pe - )1 + 3 [a -I + 2a2. )} , (A. 16)

and a, r, p, X, and p are given by Eqs. (B.1), (B.26), (B.7), (B.8), and

(B.4), respectively. The circumferential component of the drag (A _a) Is

given by the circumferential component of Eq. (B.20). The circumferetial

component of the acceleration due to turbulence (At ) could be given by the

cicumferential component of Eq. (B.34) which is Eq.vfo 6) with u and X

replaced by pT and AT.

The axial gas velocity equation is

au au au~~
u 1Uz d 1 ?a - (u- *

at r- Ur z " dq- P3z z-z

(A.17)

(A + (A + +(A
drag z viscz turb z

where

au au au auI ur +u z ] + r + Z
(AiscIz --

(A.18)

an aur u u au u+ [ (2 z, r --! + X( z+ -- +r]
az3 a r r QAaz ar +r }

and p, p, r, a, u, and X are given by Eqs. (1.6), (1.4), (B.26), (B.1), (1.7),

and (B.8), respectively. The axial component of the drag (Adrag)z is given by

the axial component of Eq. (B.20). The axial component of the acceleration

due to turbulence (Aturb)z could be given by the axial component of Eq. (B.34)

which is Eq. (A.18) with U and A replaced by UT and 'XT

The components of the solid phase velocity equation are

the radial solid phase velocity equation

Ur * 3Ur * (dra)r + (Astress)r .19)

Srr rr-a Uz g7- dq r
P p
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the circumferental solid phase velocity equation

u - -u uu
Tt z rz Tr-- (Ad rage (.

and tne axial solid phase velocity equation

*E r 3u a * 3 z

where p and p arg given by Eqs. (B.6) and (B.4), respectively. The density of
the solid phase p is assumed constant. The components of the accelerations
due to drag, Adragi, and intergranular stress, Astresss are given by the
components of Eqs. (B.20) and (B.23), respectively.

The particle number equation is

_m 1 a 3 *

t r r (rr - z zNd -(.2

The regression rate equation is

3d 3d ad<> (A.23)
Tat -ur r- u. z a

where the burning rate correlation <b> is given by Eq. (B.25).

The surface temperature equation is

T +T 1 <b (A.24)
at ru3r z 3  4

where the correlation <b for the rate of change of grain surface temperature
is discussed in Section (4.7.10).
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Appendix B

Correlation Model Formulas

This appendix contains a list of correlation model formulas. The
formulas are discussed in detail in Section 4.7. The terms listed in this
appendix are in a form compatible with Eq. (4.32) and those listed in Appendix
A.

The porosity or gas volume fraction (Section 4.2.1) is given by

S1 - Vp(d)m/VG . (B.1)

The equations of state (Section 4.7.1) are

T(ps) - TRt(p)(Y-)/Y exp (!!I ls) 1 K . (B.2)) R )Ry

S T , J/kg , (B.3)

S- (R + n)- I , kg/m3  , (B.4)
M p 2s

a-2 . m a2 /.2  , (B.5)

where R - 8.3143 J/Smol-K) is the universal gas constant, M (kg/mol) is the
molar mass and n (m /kg) is the covolume. The pressure logarithm function q
is defined by (Section 4.2.2)

q - ql[ln(p/pl) + i] , Pa; or p - p, exp(q-- - 1) , Pa . (B.6)

The shear viscosity coefficient U and the bulk viscosity coefficient X
are (Section 4.7.2)

UJ" W + P I -J T ' Pa-s ,(B .7)

X + T Pa-s (1.8)

0 1 +T
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The acceleration by viscosity is modeled by (Section 4.7.2)

A c V [a[2uE + (X- 2 u) (trace E) I]} /, ms 2  (B.9)

where E is the strain rate tensor computed using the average velocities, i.e.,

E- 0.5 (Vu + (Vu)T ) . (B.10)

The heat dissipation function term is modeled by (Section 4.7.3)

-L ;(E) + <w> + -L 0 IW(kg.K) (B.11)
pT pT T

where

(E) - 2v trace(E 2  + (X-4 (trace )2 W/23  (B.12)

)u*2(I 2/ 2~(ac + L AI)

4 / -. I + Vl(kg.K) (1.13)
< p.T VG)2 / 3 2

and 0T is given by Eq. (B.35).

The thermal conductivity coefficient K is modeled by (Section 4.7.4)

T 1 .5
K: = K~ +  W/(U-K) .(B.14)

The heat conduction term in the governing equations is modeled by (Section
4.7.4)

T = gas + Tparticle + Tturb ' W/(kg-K) , (1.15)

where

* V.(a K VT) (1.16)
gas "-pT
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and

QpT V a[h (TT) + h(TT)] , before ignition

*particle

0 , after ignition

with

h - + 0.2 y- (c2p IUd 1/3 ,w/m2.-) (B.18)

C D/2 uD /2

hr O sB(T+T) (T2+1.2) 2K) (B.19)

*-8 -2 -4
In Eq. (B.19), e is the particle emissivity, aSB 5.67032.10 Wa- K is
the Stephan-Boltzmann constant, and I is the average grain surface
temperature. The turbulent heat flux within the gas I is given by Eqs.
(B.36) and (B.37).

The acceleration term due to the drag betveen gas and particles is
modeled by (Section 4.7.5)

A rgun for a40.65

Adrag 4[(a-O.65)Aeyolds + (0.9-a)Atrgun] for 0.65<a<0.9 (.20)

Aenolds for 0.94a

where

p(u )k2 . [1.75 * + 0 %w (1.21)A~rgun (u'u) 3 2 Iu-uI + 150 (1-n),-- / 2  (.)

Argun - p L pDp
p

and

a a *2
ARenld = (u-u v (0.2 lu-ut + 12 --- m/s (B.22)

p pDp
p
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-The acceleration term due to intergranular stress is modeled by (Section
4.7.6)

*2 1 2 2
Astress -a Tj; V(1-0) , m /s (3.23)

*
where a(ct) is a sound speed function for the particulate phase. The function
is modeled by

*a p (1 1 U ) , for a<aa
a(a) - (3.24)

0 , for a24a

The burning rate is modeled by (Section 4.7.7)

B-)
<> 0 + B1P , r/s . (3.25)

The source term r is (Section 4.7.8)

i*r - R.-s <> , 1/s . (1.26)a p VG p

The enthalpy factor R of the source term (Section 4.7.8) is defined by

=a [(e + p/i) - (a + p/p)] , J/(k$-K) (9.27)

where G is

S" Tf -  sI , /kgJ/ (3.28)

with ga - 9.80665 u/s being the standard acceleration.

The particle geometry enters the equations as the four functions v_(I),

Ss( d), p( a) nd a (1). We provide the formulas that defins these functions
fr spherical, cylindrical, and tubular grains.
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For a spherical grain with initial diameter 60 one defines

R - max (0, (Do 2d)/2)

p 3Vp wR

s =4.wR2  ,(B.29)

a= 2

D - 2R
p

A solid cylindrical grain may be described by its initial diameter, to.
and height, to- Let

it-X (D0 -2d)/2

(B. 30)

L- L - 2d 01

If either R 4 0 or L 4 0, then the grain has been burnt. If both quantities
are positive, then we define

v~

p
a 2w R(R+L),P (.3)

ap- (2RL4%R 2 )/2 ,;

D .(2--L)/2

p

A
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A tubular grain my be defined by its initial height and the initial
outer and inner diameters, to and I, respectively. tat

R - (*Do-2d)/2

r - (d0+2d)/2 (B.32)

L mL-2d •

The grain is completely burut if either R-r u 0 or L 4 0. If both of these
quantities are positive, then the grain geometry functions are

5p - (D4d0 ) (R-r+L) ,
sp MTO 0 )(R-+L)(B.33)

ap - (2L+w(r )2 ,

Dp - (2R+L)/2 .

We consider a detailed study of turbulence models for interior ballistics
flows to be outside the scope of this report. Hence, the correlation models
are quite 62ementary and are listed in this report only for completeness. The
acceleration by the gas phase turbulent stress tensor Aturb and the turbulent
heat dissipation function 0T, could have the same form as Avisc (Eq. (B.9))
and (E), (Sq. (1.12)), respectively, but with different viscosity
coefficients, that is,

Aturb ' -V a[2 I I T + (kT 321T) (trace 1) I]} , */s2 (1.34)

0 - 2 UT trace(I ) + (XT -.1 UT) (trace Z)2 , W/m3  (1.35)

and OT and A denote the viscosity coefficients for turbulent flows. The
manner in whIch these coefficients are determined strongly depends on the
particular turbulence model one uses and, hence, will not be given. As
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discussed in Section 4.7.6, the solid phase turbulent stress tensor A Is set

to zero. The turbulence heat flux vector QT is modeled by Ishil (1971) and

Gibeling et al. (1980) as

2C _ - LE (T, - T) W/m' (B.36)
QT T[VG(I) a

where Ti Is an average temperature on the interface (a function 
of T and

and KT is given by an algebraic forula involving an 
effective viscosity and

Prandtl number. Consequently, Vturb in Eq. (B.15) is modeled as

7turb " - V.(ciQT) , W/(kg-K) (B.37)
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FuE DOUNDARY PROBLzMS WITH NONLIlNM SOUE TERMS
4

Gunter H. Xuyer

School of Mathematics
Georgia Institute of Technology

Atlanta, Georgia 30332

Abstract. Multi dimensional free boundary problems with

nonlinear reaction terms are approximated with a modified

method of lines. An iterative numerical method results in which

only one dimensional free boundary problems are solved

sequentially. The algorichm is applied to an obstacle oroblem,

a Jichaelis-Wenten reaction problem and a two component
second order reaction problem.

The Alorithm. The term "free boundary problem" is used to describe

a boundary value problem for differential equations where the domain of

definition of the dependent variable is unknown a priori and must be

determined simultaneously with the solution of the equations. Solidification,

ablation, free streamline and some shock problem are common examples of

free boundary and interface problems. Vront tracking methods for free

boundary problems describe those solution methods which specifically use the

geometry of the free boundary in the solution algorithm. Saral survey

papers on free boundary problems have been published which detail their

origin and the various solution methods (see. e.g. [2] ).
In this report we shall examine front tracking for elliptic and

parabolic free boundary problems involving nonlinear reactions. We shall

employ the method of lines.vhich leads to a sequence of one dimenional
free boundary problems from which the solution of the multi dimensional

problem is determined. A discription of the method of lines for linear
differential equations appears in[4], and a mathematical analysis of the
numerical algorithm is given in [5] for the Reynolds equation of hydrodynamic
lubrication.

It is possible to extend the results of (5] by means of monotonicity
arguments to certain uonli ar differential equations of the form

subject touu/n o, (1.2) u - u/A n 0

on the free boundary. In particular, it is required that

f(uX) - + f"(uK)
where f1 is uniformly bounded and

af2

au

where ) is the first sixenvalue of the smallest domain into whieh the
computd domain can be Imbedded. Details of the proof will be given elaewhuru.

This research was supported by the U.S. Atm Research Offie under

Contract DAA-79-0145
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It is the purpose of this note to identify some problems which fit
into this setting, and to examine the performance of the proposed numerical
methods for such problems.

Specifically, we shall consider the following problem on the unit
square R

Au - f(u.x.y) (x,y) £ D

(1.3) u - g(xy) (x,y) c DD
u- 0

where D is the subset of the unit square which bounded above by the free
boundary y-s(x). On the bottom and on the sides of the square below the
free boundary either Dirichlet or Neumann conditions are prescribed. We
remark that the restriction to the Laplacian is not essential. The conver-
gence proof applies to more general elliptic operators without cross derL-
vatives, while the numerical results indicate that the method works equally
well in the presence of cross derivatives. Hence a combination of the
method of lines and domain mapping methods may be considered to free the
method of lines from some of the geometric restrictions which so far have
had to be observed.

The free boundary problem (1.3) is the classical obstacle problem.
It arises, for example, when a membrane of altitude w and supported on
the boundary of the square is pushed up by an obstacle v. In the usual
obstacle problem the shape of the obstacle is prescribed. In (1.3) the
shape would depend on the membrane itself. Where the membrane does not touch
the obstacle it satisries Laplace's equation. At the point of contact
it assumes the same altitude and slope as the obstacle. The function
u-w-v then satisfies a problem like (1.3). As is well known, the obstacle
problem is usually written and analyzed as a variational inequality (see,
e.g. [3) ). Our numerical method makes no assumption on the structure of
(1.3), but our convergence proof does.

The numerical solution of (1.3) can proceed as follows. On the basis
of the maximum principle (or physical reasoning) one can often find an
upper and lower bound on the solution of (1.3), say jul!C. Then let K be
a constant chosen so large that

(1.4) af(uxy)1  1 K lul 1 C, (x,y) c R.
au

Now the following algorithm is suggested in [2 ,p.370] for the nonlinear
Poisson equatinn k k kl kl(1.5) 4Uk  - k  . f(u 'lX.y) - Ku- "

This iteration can be combined in a natural way with the line-SOR approach
used in [4] for free boundary problemb. Specifically, let
O-nx9  < x 1 <..... < xn+l - 1 denote an equidistant partition and let u be
replaced by finite differences such as

ui+l +ui 1 - 2 ui
(1.6) u (xiy) Ax:

or
-U 1xiy) ui+2 + 16u - 30ui +16ui-1 " 1-2

(1.7) U i i-l i-2
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Then for i-l,..,N and k-1,2,.... we solve repeatedly the one dimensional
problem

(1.8) o - (K+a0) - 0

c(o) - S(xi#O) , Q(s - 4'(s - 0

uk k-1 k-,ui .ui O(u-u )

where
2

k- 
Ik

1lI(y) - - J± . .J + * k,-i"  ,
u,, (u1 ,ly) k- 1

if (1.6) is ubud, or

30

2Ax 2

11()-1+2 1+1- i-I i-2 k-i ku-1V Y 2Ax2  
- + f(u 1  .v) - K

if (1.7) is used. On the boundaries x and xM4 l the prescribed Dirichlet
data or reflection (Neumann) data are used.

The one dimensional problem (1.8) can be solved in a variety of ways.
Here we use the invariant imbedding method outlined in [4]. briefly, we write

k , ky
SI(y) + (Y)

where R and w are the (assumed known or computable) solutions of the well
defined initial value problems

(1.9) Ri'  - I ) +a)Ri. o) -
and k. k

V' -(K+a i) M. w- A (y ).1wu wi(O) - B(XiO).

The free boundary s is chosen as the smallest solution of,4

0(y) - i(y) - 0.
If DR solution exists on (0,13 then we set s~ - 1. On the no- given interval
(0,s 1 ) the function u1 is then determined as the solution of the standard
two point boundary value problem

W k (y)
subject to Riven conditions at the end points.

The converSenc proof of [51 applies to this problem under specific
assumptions on f and a when W - 1. Hovever, we generally choose W>l In
order to accelerate convergence. We also note that in terms of programming
and computing complexity and effort the above algorithm for nonlinear Poisson' a
equations differe only sliphtly from the corresponding algrithm for linear
equations as described in (A)
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Most of the numerical experiments carried out so far have used the

second order approximation (1.6) and the trapezoidal rule for the integration

of the equations (1.9) (as well as for the reverse sweep used for the computation

of il' and hence a - for details see [4] ). However, numerical experiments with

the unstable Hele-Shaw flow problem [6] strongly indicate that tae fourth
order quotient should be used where possible. The primary reason for this

suggestion is that the number of lines which can be handled economically with
regard to storage and rate of convergence tends to be small compared to the
number of mesh points per line. Therefore the accuracy of the approximation

for u tends to be too low when the second order method is used. We also

have not yet experimented with a higher order integrator for the initial

value problem (1.9), but work along these lines is planned in view of the
relative sensitivity of the computed results to the number of mesh points
along each line.

Numerical Examples. 1) A linear obstacle problem: Suppose an elastic
membrane w covering the unit square is displaced by an ellipsoidal punch
with the shape v(x,y) 2 2-x2-4(y-)2

Then the difference u = w-v between the membrane and the punch satisfies

for u> v the free boundary rroblem

(2.1) .u M 10 (x,y) C D
u = -v (x,y) c 3D

and
u - u/n = 0 y = s(x)

This is the classical obstacle problem for which the convergence of the
numerical method and the convergence of the discrete solution to the con-
tinuous solution can be established a priori. A numerical solution of this

problem with the second order approximation to u is shown in Fig. 1.
We note that in this case K-0. A nonlinear obstacfe problem results if.

for example, the membrane is simultaneously subject to a nonlinear force

f(w,x,y).

Fig. 1. Plot of membrane and obstacle for problem (2,1).
Ax-i/20, Ay-l/100, w-l.6; 51 iteratipns for a
convergence criterion of max -u - < 107
between successive iterations. otal computing
time 60 sec on the Cyber 170/700.
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2) A Michealis-Menten reaction problem: As a first example of a free
boundary problem with a nonlinear source term we shall consider an extension
of the oxygen diffusion-consumption model which is representative for a
number of biological diffusion processes (see, e.g.[7] ). Here an agent at
concentration u(x,y,t) is diffusing into the medium D (such as oxygen
diffusing through living tissue). As it diffuses it is consumed at a non-
constant rate according to a Michaelis-Menten reaction. The concentration
may then be described by the free boundary problem

(2.2) Au - cut f(u,xY)

with

f(u,x,y) =+ e(xy)

where e(x,y) is a local threshhold consumption rate. At the free boundary
the concentration and its gradient vanish. (Other conditions could be imposed,
such as threshhold concentrations or gradients - see the reaction problem
below.) If problem (2.2) is time discretized and solved as a sequence of
time implicit elliptic equations then the monotone convergence theory applies
at every time step.

For numerical work we shall use the same geometry as in the obstacle
problem. Specifically we shall assume that

c(x,y) - 8(x-0.5)2  (x,y) C D

au/en - 0 on x - 0 and x = 1
u(x,0) - x(1-x).

If s(x)-l then we assume that Du/ y = 0. For convenience we shall consider
only the steady state case (cu 0). Fig. 2 shows D and the free boundary. From
the data symmetry about x-0.5 is expected although it is not specifically used
in the program.

O"

X-AXIS

Fig. 2. Plot of the steady state free boundary for the Michaelis-
-Menten reaction problem (2.2). Ax-1/20, Ay-l/100, w -1.6, 49
iterations. The same number of iterations were required for K - U~ 1
as for K a a 0.
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3) Second order diffusion-reaction: As a third example let us consider
a two-component reaction problem where a substance at concentration u
diffuses into an immobile substance at concentration v while undergoing a
second order irreversible reaction with it. The model equations and an

application to the diffusion of oxygen in nickel are discussed in [8] where
an asymptotic formula for the diffusion front is developed in one space
dimension (which, however, does not correspond to a free boundary). Here
we shall deal with a two dimensional problem in which movement into unreacted
zones can occur only if the gradient 3u/an on the diffusion front exceeds
a given threshhold value.

Specifically, for the same geometry as in examples 1) and 2) we shall
consider the time dependent boundary value problem

(2.3) l = u - kuvt x c(O,1), 0< y< s(x,L)

vt -kuv

au/an = Dv/an = 0 on x = 0 and x = 1, t > 0
u(x,y,O) = 0
v(x,y,O) = v (x,y)

and the free boundary condition 0

u = d u/inj e > 0 y = s(x,t).

This problem is readily converted into a single variable problem for u because

v(x,y,t) = v (X,y)exp(-k lu(x,y,r)dr.

Thus, we shall consider the scalar equation

Au - ut = kuvexp(-k fudr)

subject to the appropriate boundary conditions induced by (2.3).
A fully time implicit approximation based on a backward difference

quotient for u and the trapezoidal rule for the integral then leads to the
sequence of eliptic problems at time t for u= u

n n

(2.4) Au = f(u,x,y,t)
where U - u u+u

f(u,x,y,t) atn-i + kuv o(XnY)-(xytn-n )ex p (-k t n- -

with u +u
O(x'Yttn) 0(xYtn-l)exp(-kAt 2 )

For an input concentration of 2 2
u(x,y,O) = (t/(l+t))(0.l+16x (l-x)2 )

it follows immediately on physical grounds (or from the maximum principle)
that

0 1 u 11.1 t /(l+t), 0 1 v - v .

Since 0(x,y,t) 1 it is simple to check that

af k

for sufficiently small A t. Hence for the constant K in (1.4) we shall
choose I

K T + k.
2t
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x

Fig. 3. Plot of u(x,y,t). Ax=1/20, Ay=l/10O, t= 0.1, At=0.1/20,
w = 1.6. About 34 iterations per time step are required
for convergence. Total computing time for 20 time steps-
240 sec on the Cyber 170/700.

Some final comments. The most restrictive aspect of the method of
lines as discussed in the literature is the strong dependence on rectangular
or circular regions. But as is well known (see, e.g. (9] ) irregular regions
can often be mapped onto regular computational domains at the expense of
complicating the differential equation. In order to apply the method of
lines over the computational domain its behavior for general elliptic
equations of the form

2
z a..u + Z b + cu = f

i,j 11I xl I
must be established.

First experiments with the method of lines over a rectangular computat! .,
domain show little change in its performance when the equation no longer is
in divergence form, although fourth order approximations for u and (u)
appear to be important. The application of the method of linesX~o free gondary tj
problems on irregular domains is currently under cons'deration.
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NUMERICAL SOLUTION TO AN AUTOFRETTAGED TUBE

WITH CONSTRAINING WALLS AND END CLOSURES

Peter C. T. Chen
U.S. Army Armament Research and Development Command

Large Caliber Weapon Systems Laboratory
Benet Weapons Laboratory
Watervliet, NY 12189

ABSTRACT. This paper presents a numerical study of a container
autofrettage process. This process uses internal hydraulic pressure to expand
the tube, restraining containers to control the amount of tube expansion and
the press force to hold the end closures. The incremental finite-difference
approach developed recently by the author is extended to obtain numerical
results. The effect of restraining walls and the press force on the
displacements and stresses are discussed.

1. INTRODUCTION. The importance of favorable residual stresses in an
autofrettaged tube is well known (ref. 1). The container method is one of the
autofrettage processes currently being used for gun tubes. It uses internal
hydraulic pressure to expand the tube. Restraining containers or dies are
used to control the amount of tube expansion by means of a small, predeter-
mined clearance between the inside of the containers and the outside of the
tube. The press is used to simply hold the end closures or seals in the ends
of the tube and to support the forces of the internal pressure on the
closures.

Many methods for solving the partially autofrettaged problem in a gun
tube have been reported (refs. 2-6). However, the effect of constraining
walls and end closures on the residual stresses have never been discussed.
This paper presents a numerical study of the container autofrettage process.
The finite difference approach developed recently by the author (ref. 6) is
extended to obtain the numerical results. The material is assumed to obey the
Mises' yield criterion and the Prandlt-Reuss incremental stress-strain
relations.

2. FINITE-DIFFERENCE FORMULATION. Consider a long, open-end thick-
walled cylinder of inner radius a and external radius b. The inside surface
of the tube is subjected to hydraulic pressure p and and end force (pwa2) is
applied to simply hold the end closures or seals. The additional force f on
the end closures will press against the tube. The amount of tube expansion is
restricted by means of restraining containers of inside radius C. The cross
section of the tube is divided into n rings with rl - a, r2 ,..., rk ' 0,...,
rn+1 - b, where p is the radius of the elastic-plastic interface. Since the
material behavior is nonlinear, an incremental approach is used. At the
beginning of each incremental loading, the distribution of displacements,
strains, and stresses are assumed to be known and we want to determine Au,
Acr, Ace, Aczs Aar, Ace, Aoz at all grid points. According to the Prandtl-
Reuss flow theory, the incremental stresses are related to the incremental
strains by
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{Aoil = [dij] {Aej} for ij - r,B,z (1)

and

[dij] = 2G[v/(l-2v) + 6ij - oi'oj'/s] (2)

where
2 1

2G E E/(1+v) , S - (1 + - HI/G) 2  H'/E - a/(1-a)
3 3

m= (Or+Oe+Oz)/3 , oi' - oi- am ,

- (1//2)[(r-08) 2 + (o-az) 2 + (oz-Or)2]1 / 2 ) 06- (3)

E is Young's modulus, v is Poisson's ratio, 61j is the Kronecker delta, aE is
the slope of the effective stress-strain curve, and oo is the yield stress in
simple tension or compression. When a < oo or do < 0, the state of stress is
elastic and the last term in Eq. (2) disappears. Since the incremental
stresses are related to the incremental strains by Eq. (1) and Au - ro,
there exists only three unknowns at each station that have to be determined
for each increment of loading. Accounting for the fact that the axial strain
e z is independent of r, the unknown variables in the present formulation are
(Are)i, (Aer)i, for i - 1,2,...,n,n+l, and aez.

The equation of equilibrium and the equation of compatibility are valid
for both the elastic and the plastic regions of a thick-walled tube. The
finite-difference forms of these two equations at i - 1,...,n are given by
(ref. 6)

[(ri+l-2ri)(dl2)i + (-ri+j+ri)(d22)i(ACO)i

+ [(ri+-2ri)(dli)i + (-ri+j+ri)(d21)i1(A1r)i

+ ri(d12)i+1(Aee)i+l + rl(dll)i+I(Acr)i+1

+ [(ri+1-2ri)(d13) + (-ri+1+ri)(d23)i + ri(dl3)i+]Acz

= (ri+l-ri)(o0-or)i - ri[(Or)i+l - (or)il (4)

for the equation of equilibrium, and

(ri+1-2ri)(Ace)i - (ri+l-ri)(Aer)i + ri(Ace)i+.

- (ri+l-ri)(Cr-EB)i- ri[(ce)i+l- (ce)i] (5)

for the equation of compatibility.
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3. BOUNDARY CONDITIONS AND INCREMENTAL LOADING. The three boundary
-A conditions for the problem are

(i) (dl2)(Ace)1 + (d ) (ACr) + (dl3)iACz - -Ap (6)

(ii) (dl2)n+l(Ac6)n+l + (dll)n+I(Aer)n+l + (dl3)n+lAz = 0 (7a)

before contact or (Ace)n+l - 0 after contact , (7b)

(iii)
n

(ri+l-ri){ri[(d23)i(Ae)i + (dl3)i(Aer)i] + ri+l[(d23)i+l(Aee)i+li-l

n
+ (dl3)i+l(Acr)i+I ]} + Y (ri+j-ri)(ri(d33)i + ri+l(d33)i+l]eCz

i-l

- Af/W (8)

Now we can form a system of 2n+3 equations for solving 2n+3 unknowns, (c 8)i,
(Acr)i, at i - 1,2,...,n,n+l and Aez. Equations (6), (7), and (8) are taken
as the first and the last two equations, respectively, and the other 2n
equations are set up at i - 1,2,...,n using Eqs. (4) and (5). The final
system is an unsymmetric matrix of arrow type with the nonzero terms appearing
in the last row and column and others clustered about the main diagonal, two
below and one above.

In order to increase the efficiency of the program, an adaptive algorithm
based on a scaled incremental-loading approach has been implemented. In each
step, a dummy load-increment such as Ap is applied and the incremental results
Aoi for i r,e,z at all grids are determined. For all grid points at which

a - Iloill < co, we compute the scaler g's by the formula
1.-

g - {r + (r2 + 4l+oi1I2(IOo 2-ll 112)1/2 /IIAoiI1 2  (9)

where

r - Iloill2 + IIAOiI 2 - l0i + Aoitj 2  (10)

and l loll, htalill, 11ai + &oill are computed by
Had 2 " [(Or- 8) 2 + (na-02) 2 + (az-r) 21 (11)

2

Let A be the minimum of the g's. Then X is the load-increment factor just
sufficient to yield one additional point. A sequence of A) can be
determined for all steps j - 1,2,...,m and the updated results are

p(J) - p(J-1) + X(- )ApCJ)

oi(J) = ai(J-1) + A(J)Aoi(J) , etc. (12)
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4. NUMERICAL RESULTS. The numerical results are obtained on the basis

of the following parameters: a - 1.895", b - 3.21", c - 3.2275", n - 50, E =

30x106 psi, v - 0.3, co 1 17x104 psi and H' - 0. The maximum internal

pressure applied is 13x O psi (max. p) and the maximum end force applied

against the tube is f - -0.6pw(b 2-a2). Introducing the dimensionless quantity

f - f/[n(b 2-a2 )pJ, we have -0.6 4 f 4 0. Since the end force required to

simply hold the end closures or scales is -p a2 , the total end force applied

on the end closures is F - pva 2I-1 + ?(b 2 /a2-1)]. In order to discuss the
effect of end force f, the numerical results have been obtained for two

extreme cases, i.e. f = 0, -0.6.

(a) f = 0. In this case the total end force applied on the end closures

is F = -ia, Just enough to support the forces of the internal pressure on

the closures. Therefore, there is no force applied at the end of the tube.

The maximum internal pressure (p - 13x104 psi) is applied incrementally in

three different stages. The displacements ua, ub at the inside, outside

surface as functions of internal pressure p are shown in Figure 1. In stage

one, the elastic solution due to a dummy internal pressure is applied and the

scaled factor to cause initial yielding is determined. The closed form

elastic solution together with the Mises' yield criterion may be used and the

pressure factor corresponding to initial yielding is p*/oo - 0.36875. In the

second stage, scaled incremental-loading approach is used until the maximum
allowable outside displacement (c-b) is reached. At the instant when the

contact between the tube and container first occurs, the pressure p/co is

0.57916 and 96 percent of the tube has been yielded. In the third stage,

there is no outside displacement and internal pressure is increased in 20

equal steps until the maximum p/co - 0.76471 has been reached. The relation

between pressure and inside displacement is almost linear in this stage as

shown in Figure 1. The results of the displacements at the end of three

stages are represented by the points 1, 2, and 3. The corresponding results

of the stress distributions for Or, ce, and oz are shown in Figures 2 through

4, respectively. It can be seen that the stress distributions at the end of

three loading stages are quite different. The residual stresses after

unloading completely from the end of three loading stages have also been

obtained. The results for the residual hoop stresses for three stages and the

residual axial stress for the last stage are shown in Figure 5. The

differences in residual stresses between stage 2 and 3 are much smaller than

those before unloading. That is to say that further increase in internal

pressure is possible in the presence of restraining container but the
increased pressure makes little differences in the residual stresses. The
purpose of the outside container is to prevent large displacements to occur.

(b) f - -0.6. In this case the total end force applied on the end
closures is F =-pwa2(0.4 + 0.6 b2/a2). This end force is larger than that
required to support the forces of the internal pressure on the closures.
Therefore, the end force applied at the end of the tube is f - -0.6 pw(b 2-a2).
For this case the maximum internal pressure is applied incrementally in four

different stages. The displacements ua, ub at the inside, outside surface as

functions of internal pressure p are shown in Figure 6. The points I to 4
represent the corresponding results at the end of each loading stagg. At the
end of the first stage, initial yielding solution has been obtained and the

pressure required is p - 0.34594 oo . In the second stage, 50 scaled
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incremental-loading steps are applied until the entire tube becomes yielded.
At the end of the second stage, the pressure factor p/o is 0.50194 and the
outside displacement is still mailer than the clearance, i.e., ub = 0.86126 b
Oo/E < 0.0175". Since the material Is assumed to be ideally plastic, the tube
would collapse if there were no outside restraining containers. A very small
increase in internal pressure, say Ap/o o - 0.0001, will close the clearance
between the tube and container. The instant when the contact first occurs is
called the end of loading stage 3. After the contact we increase the internal
pressure in 29 equal steps until the maximum pressure has been reached. The
relation between pressure and internal displacement is approximately linear in
this stage as shown in Figure 6. The stress distributions for Or, ae at the
end of four loading stages are shown in Figures 7 and 8 respectively, and that
for Oz shown In Figure 4. The change in sLresses during Lhe third loading
stage is too small to be shown graphically in these figures but the
differences in displacements are large as shown in Figure 6. The residual
stresses due to complete unloading from the end of each loading sLage have
also been obtained and some of the results are shown in Figure 9. It can be
seen that the differences in stresses during loading stages Lhree and four are
quite large but Lhe corresponding residual stresses are very close. This also
shows that the effect of outside containers and end forces on Lhe residual
stresses is small but their effects on Lhe displacement and stresses during
loading are large. In the presenLe of the press force on the tube end, the
axial stress distribuLions change drastically as shown in Figure 4 as compared
with the case of no end force. By comparing the results for the residual
axial stresses as shown In Figures 5 and 9, we can see two different stress
patterns, one is almost the reverse of the other. As a result of extra press
force on the tube end, the final residual stresses can change signs.
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FINITE ELEMENT MODELING OF THE VULNERABILITY OF
U.S. AND FOREIGN LAND MINES TO BLAST LOADS

Frederick H. Gregory
Aaron D. Gupta
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U.S. Army Armament Research and Development Command

Aberdeen Proving Ground, Maryland 21005

ABSTRACT. The structural response of the U.S. M-15 and the Soviet T -46
land mines to an externally applied pressure wave has been analyzed with the
ADINA finite element code. The finite element models of these mines use the
axisymmetric two-dimensional mesh configurations with both rigid and non-
rigid base support boundary conditions to simulate the soil. An explicit
central difference time integration scheme has been used for both analyses.

The mines' steel casings and high explosive filler materials were assumed
to have nonlinear constitutive material models. Trapped air inside the mine
body was modeled as an assembly of inviscid linear compressible fluid elements.
The steel cases were found to be markedly inhomogeneous via 1-D tensile tests
of specimens cut from various areas of the mines. These materials were modeled
with bilinear stress strain curves, von Mises yield condition, and kinematic
hardening rule. Tension cut-off elastic-plastic models of the explosives which
employed bulk moduli vs volume strain relations, were derived from Mie-Gruneisen
shock wave equations of state. These models allowed tension cut-off planes to
form in a direction normal to the principal tensile stress whenever the strain
initially exceeded 0.1% in tension.

Solution of these problems in terms of stresses and displacements out to
2 msec of real time response required approximately 4 to 5 hours of cpu time
on the CDC 7600 computer for a transient shock load imposed on the top and
sides of the mines. Failure of the mine cases was predicted, based on a
comparison of the value of the three-dimensional second invariant of plastic
strain with that of the one-dimensional value obtained from the tensile tests.

1. INTRODUCTION. This paper describes the re'ponse of antitank mines of
two different configurations to a transient blast load. The rationale for this
analysis is the need to develop a remote, expeditious means of clearing a path

.1 through an enemy mine field. A technique of delivering a relatively large
transient pressure to the surface of the earth b) means of explosives is under
development. The object of this study is to determine the extent of structural
damage to mine bodies from a given level of blast wave amplitude and shape. The
principal kill mechanism is to be a serious distortion or rupture of the mine
body rather than fuze initiation or pressure plate removal since the activation
mechanisms could be changed easily from one type of mine to another and a sure-
kill could not be guaranteed based on a particular mode of actuation.

The mines investigated represent typical antitank mines, both foreign and
of U.S. manufacture, which consist basically of round thin metal bodies filled
with explosives. These types of antitank mines constitute a large part of the
inventory of U.S. and Soviet mines. The components most distinctive are the
fuze mechanisms. There are a variety of radically different fuzes for these
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mines, different both in mechanical designs and method of activation. Therefore
the numerical models adapted for the two mines are representative of a large
class of both foreign and U.S. mines.

The paper has four major areas as follows: (a) problem definition,
(b) determination of material properties and selection of failure criteria,
(c) finite element model description and calculations, and (d) dynamic
response prediction of the structural assembly.

2. PROBLEM DEFINITION.

A. TM-46 Antitank Mine Description. The TM-46 land mine has a
cylindrical steel body with a primary fuze well in the center of the top and
one on the bottom, presumably for antilift or booby trapping purposes. In
addition, it has a secondary fuzewell in the sidewall underneath the carrying
handle. A sectional drawing of the mine is shown in Figure 1. The mine has
a nominal diameter of 29.7 cm, height of 7.3 cm, and weighs 8.7 kg with a main
charge of S.7 kg TNT.

The mine body is made of three pieces of sheet steel which are joined at
the upper periphery by a 3600 crimp. The top cover of the mine body is only
.635 mm thick and has three steps. This cover connects to a central circular
plate formed by spot-welding of a thick plate to the thin cover section. The
intermediate wall is formed from .94 mm thick steel sheet to which a hollow
cylindrical piece .56 mm thick is attached to form the centrally located top
fuze well. The fuze well contains a 40 g tetryl booster charge for fuze activa-
tion.

The lower part of the mine body is formed by a deep drawing operation
which results in very inhomogeneous material properties. The central cavity
in the main body of the mine is filled with a charge of 5.7 kg TNT explosive.
The cavity between the top and intermediate walls is unfilled. However
compression of air in this region can contribute to alteration of the response
behavior of the mine and subsequent uncrimping of the joint.

The normal method of activation of the fuze is by means of force applied
to the pressure cap depressing the fuze and releasing the striker to strike
the booster charge in the fuze well. This activates the tetryl booster which
in turn detonates the primary TNT charge. The secondary fuze well on the
TM-46 mine gives it an antidisturbance capability.

B. M-15 Antitank Mine Description. The M-15 mine has a cylindrical
body similar to the TM-46 mine. However there is no intermediate wall or
unfilled space in the U.S. mine. The mine has a nominal diameter of 32.13 cm,
height of 9.88 cm, and weighs 14.3 kg. The center of the top J the mine has
a depressed area which houses the pressure plate assembly. Isometric and side
views of the mine are shown in Figure 2.

The mine body is made essentially of two pieces of WD-1010 steel which
are joined at the lower periphery by a 3600 crimp. The upper part of the mine
body is formed by a deep drawing operation which results in very inhomogeneous
materials properties as is the case with the Soviet TM-46 mine. The central
cavity in the lower half of Figure 2 is filled with 10 kg of composition B
explosive.
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Figure 2. U.S. M-is Antitank Mine

270



(1250 to 2000 newtons) which in turn is transferred to the belleville

springs. At a certain deflection, the belleville springs snap through,
driving the firing pin into the detonator. The explosion of the detonator
activates the tetryl booster which in turn detonates the primary composition
B charge. There are two auxiliary fuze wells on the M-15 mine to allow
anti-disturbance capability similar to the soviet mine.

C. Guidelines for the Numerical Model. In keeping with the philos-
ophy of identifying a general failure mechanism independent of some specific
design feature, all pressure caps or plates, fuzes and springs were omitted
from the finite element model of both mines. This was done in accordance with
the previously stated guideline of not identifying failures of the fuze
components. The models shown do not include secondary fuzes and filling holes.
However the secondary tetryl booster charge is included in the soviet mine to
facilitate assessment of the influence of trapped air in the unfilled space
below the top wall.

The auxiliary fuze wells were not considered in the current investigation
since they make the mine bodies highly susceptible to damage due to stress
concentrations near the junction between the body and the fuze. Thus, the
simplified model is conservative in terms of blast load required for mine
deactivation. Also, inclusion of these unsymmetrically located structures
would have necessitated the use of a three-dimensional (3-D) finite element
model resulting in significant increase in computing time and costs. The
dimples at the base of both mines were eliminated for the same reasons.
Because of these simplifications the 2-D axisymmetric models were adequate for
dynamic response evaluation.

D. Base Support and Surface Loading. During field emplacement, the
mines may be placed on the surface and covered with grass or other materials
for concealment. In other cases, the mines may be shallow buried. In either
case, the mines will experience transient pressure loading on the top surface
due to detonation of a countermine explosive in the vicinity. The base and
side boundary conditions were treated in two different ways in the M-15 mine
study. It is expected that typical field boundary support conditions would
be bracketed by the two extreme conditions simulated. In one case, the base
was supported on nonlinear springs, simulating soil. In this case, the mine
was simulated as being buried in soil up to its top surface by allowing down-
ward acceleration/movement of the mine based on dynamic properties of the soil
medium as described in Reference 1.

The other support condition used for the M-15 and TM-46 mines was a rigid
support which closely modeled the experimental conditions described in
Reference 2. A roller support condition was used allowing lateral, but no
vertical, motion. The indirect loading of the mine through shock waves passing
through the soil medium was not modeled. In this rigid support condition, the
input shock load is applied to the top and sides of the mine; whereas, in the
spring support condition, only the top of the mine was loaded directly.

For structural loading the pressure pulse used in this paper simulated peak
pressure and impulse measured from experiments conducted with mine clearance
types of explosives in Reference 2. The peak pressure was 13.8 MPa and the
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impulse delivered was 6.5 kPa-sec. A decaying exponential function was fitted
to these parameters resulting in the following equation

2117t
P(t) = 13.76 e (1)

A curve of this function varying in time is shown in Figure 3.
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Figure 3. Shock Loading Function for Antitank Mines

3. MATERIAL PROPERTIES AND FAILURE CRITERIA. Material properties were
required for the steel jackets, the explosive filler materials, the trapped J
air, and the soil in which the mine is emplaced. Mechanical properties were
measured for the steel jackets by employing uniaxial tensile tests. The datafor the explosive and soil were taken from available publications. Failure !

criteria used for the steel jackets and the filler materials were similar to
the formulations in Reference 3.

A. Steel Casing. The M-15 jacket is made of a medium strength
steel alloy with a density of 7.80 g/cm 3 and a thickness of .94 mm. The
TM-46 jacket is made of a low carbon soft magnetic steel equivalent to mild
steel. The lower part of the casing was deep drawn, but it retained an
equiaxed grain microstructure with isotropic properties. Two tensile K
specimens were cut from each of the significant surfaces of the mine body.
Locations of these specimens are shown in Figure 4(a) and 4(b). The specimens
were machined with a large radius on the test section as shown in Figure 4(c).
An extensometer and a biaxial strain gage were attached at the location of the
minimum width and the specimens were tested in an Instron Testing Machine.
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Typical stress-strain curves for the U.S. and the Soviet mine body are shown
in Figures 5 and 6 respectively. Evidence of work hardening and residual
stress was significant in the Soviet mine due to the forming operation and
operating field conditions.

Bilinear approximations to the stress-strain curves obtained by averaging
the data for the individual specimens are shown superimposed in Figures 5 and
6. The ADINA (4,5) finite element code used in this analysis has a bilinear,
elastic-plastic, von Mises yield condition, kinematic hardening, axisymmetric
2-D element for the steel jacket.

The criterion selected to predict failure of the steel casing material was
described in Reference 3 as the value of the second invariant of plastic devi-

atoric strain at failure, I2f P ), defined as

) = 1/2 .ii Pij P (2)

where the strains indicated are to be the strains at failure. In the uniaxial
tension test where the load is applied in the Z-direction, we have,

P P 2
12f(CI-D) = 3/4 (c zz) (3)

B. Characterization of Explosives. There are two types of explosives
employed in the TM-46 mine, i.e., TNT as the main charge and tetryl as the fuzewell
charge. For the U.S. M-15 mine, composition B-3 explosive consisting of 60% RDX
and 40% TNT is used in cast form as the main charge.

After surveying the available material properties of explosives and the
various 2-D axisymmetric materials models in the ADINA code, it was decided
that the curve description material model (see Section XII p. 17-22, Ref. 4)
was the appropriate model to use. This model requires tables of loading and
unloading bulk moduli and shear moduli versus volume strain.

A relationship between the volume strain and the bulk modulus obtained from
the Mie-Griineisen equation of state (Reference 1,6) is given as

r(r + 1)(Ap2 + Bp3 + C14) + A + Alp + B + C'p (4)K = ~2 - pr+A+Ap+B' 2 +Cp 4

where

K = the loading bulk modulus

r = the Grfineisen coefficient

A,B,C = the coefficients appearing in the Grneisen equation of state
in terms of V

A' = A(r+l) + 2B

B' = B(r+2) + 3C

C' = C(r+3)
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= v /(1-C )

Ev  = (Vo-V)/Vo, volume strain taken positive in compression

V = 1/p°  = specific volume at normal conditions.

The values for the material constants of the explosives used are shown in

Table 1.

TABLE 1. MATERIAL CONSTANTS FOR EXPLOSIVES AND SOIL

Type Po r A B C v

(g/cm3 ) (Gpa) (Gpa) (Gpa)

Comp B-3 1.68 .947 13.5 9.S 100.6 .29

TNT 1.614 .737 10.367 9.101 138.33 .3

Tetryl 1.70 1.6 10.498 17.8 20.6 .3

Wet Tuff 2.0 1.5 21.77 32.5 18.33 -

Note that when ev = 0, P = 0, K = A and V = V . Also, in the Gr~ineisen EOS, at

v = 0, we take the pressure and internal energy to be zero.

Because no data were available to relate the unloading bulk modulus to the
volumetric strain, the same values of the bulk modulus for unloading as for
loading were used for all explosives. The loading shear modulus, G., was obtained

from the loading bulk modulus, c,, by use of the relationship,

3K(1- 2v)
G 2(l-v) (5)

Figures 7-9 show the graphical relationships of the three explosives represented
by Equations (4) and (5). Table 2 gives the values of the two moduli as they
were used in the ADINA program. ADINA uses linear interpolation between
discrete points.4

The tensile volumetric strain at failure for the composition B-3 explosive
is given in Reference 6 as -0.1 per cent. This criterion was used in calcu-
lations for all explosives in this investigation. The technique used in the
ADINA code to apply this failure criterion is by the artifice of superimposing
on the applied load-induced strains, an in-situ gravity pressure sufficient to 5
cause a hydrostatic compression equal in magnitude to the tensile failure. Then,
when the total strain becomes negative, a tension cut-off plane is assumed to
form normal to the principal strain. The normal and shear stiffnesses across
this plane are reduced by a factor determined by an input value. One or two
additional planes orthogonal to existing tension cut-off plane(s) are allowed
to form if the strain criterion is net. The planes become inactive if compression
again develops in the direction normal to it.
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TABLE 2. ADINA INPUT VALUES FOR BULK AND SHEAR MODULI FOR

FILLER MATERIALS

COMPOSITION B-3 EXPLOSIVE

Point No. v Ku G

() (GPa) (GPa) (GPa)

1 0 13.52 13.52 6.60
2 1.0 14.00 14.00 6.84
3 2.5 14.91 14.91 7.28
4 3.75 15.83 15.83 7.73
5 5.0 16.92 16.92 8.26
6 10.0 23.36 23.36 11.41

TNT EXPLOSIVE

1 0 21.72 21.72 10.62
2 1.0 23.03 23.03 11.24
3 3.0 25.65 25.65 12.55
4 5.0 28.68 28.68 14.01
5 9.0 35.85 35.85 17.51
6 11.0 40.20 40.20 19.65

TETRYL FILLER

1 0 10.5 10.5 4.03
2 1.0 11.15 11.15 4.27
3 3.0 12.59 12.59 4.83
4 5.0 14.24 14.24 5.46
5 8.0 17.2 17.2 6.60
6 10.0 19.56 19.56 7.50

The pseudo-hydrostatic pre-strain is applied by positioning the vertical
coordinate (Z-coordinate) at the proper negative value. The hydrostatic pressure
applied at an element integration point is given for an element, j, by

N

P1 P e hij Zij (6)
in1

where

Pe is the density of the overburden

hij is the shape function for node i of element j

zij is the vertical coordinate for node i in element j.

The position of the system vertical coordinate can be obtained from the
equation,
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K f

Z = Ov
ave gPe

where

K 0 is the initial bulk loading modulus,

f
Cv is the volumetric failure strain, negative in tension,

g is the acceleration due to gravity.

C. Soil Simulation. For the structural response calculations of the
shallow buried M-1S mine, only the top of the mine was exposed to blast pressure
while the remainder was assumed to be embedded in soil. An implicit modeling
technique was employed whereby nodal tie elements were used to model the base
support as nonlinear springs. No simulation of the soil was necessary for the
rigid support calculations.

Three different types of nodal tie elements were available in the Ballistic
Research Laboratory version of the ADINA code. The particular type chosen is
the boundary type element defined by one node only and is capable of three
translational and three rotational degrees of freedom. In the M-15 mine, the
elements along the base of the mine were used to transmit a vertical force
(Fz), while those along the side exerted a horizontal force (Fy).

Due to the large variety of soils in which mines would be emplaced, it is
possible only to select a soil simulation model which would be representative
of some subclass of soils. Thus, a typical load deflection curve (Reference 7)
was selected to define the nodal tie element properties. The average load-
deflection for slowly varying loads in the elastic loading range from Reference 7
is .0815 MPa/cm. To account for the dynamic response of soil at the base of the
mine, a nonlinear quadratic component was added to the force deflectioTn property.

.2 For the support along the vertical sides of the mine, a linear spring force
was used due to consideration of small lateral movement. The linear nodal tie
element stiffness values along the vertical side are proportional to the height A
of the particular element onto which the nodal tie boundary element is attached.
Similarly, the nonlinear stiffness values for springs at the base in the ADINA
input data are adjusted by a factor proportional to the annular sector of W
radians and a radial extent appropriate for the particular nodal tie element.
For soil modeling of the TM-46 mine in the ADINA code, an explicit technique
using two layers of compressible soil elements surrounding the mine will be
employed.

D. Simulation of Void in TM-46 Mine. The TM-46 mine has a cavity
between the upper pressure plate and the middle plate covering the primary
charge. This cavity has air in it which would transfer some load to the middle
plate as the volume of the cavity is decreased. An attempt was made to model
the air with 2-D axisymmetric fluid elements composed of an inviscid linear
compressible material. A constant bulk modulus was used in lieu of a pressure
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dependent bulk modulus due to lack of available data for air. However, the
primary difficulty with this model was that there was nothing in the model to
prevent the upper plate from penetrating the middle plate as the deformation
progressed.

Since the air was judged to apply only a minimal restraint on the motion
of the upper plate and due to the need to prevent the two plates from passing
through one another, a different model has been adopted. The model consists
of axial truss elements connecting the two circular plates. The material model
for the trusses is nonlinear and develops only a small force up until the axial
strain in trusses approaches -1. At this strain, a large stiffness is specified
to simulate contact between the two plates. Constraints are applied to the upper
end of the trusses to insure that its radial coordinate is the same as the
radial coordinate of its lower end. Also, the axial coordinate of upper end is
constrained to translate with the upper plate.

4. FINITE ELEMENT MODEL DESCRIPTION AND CALCULATIONS. The two mines were
modeled as axisymmetric 2-D structures using the ADINA finite element code. The
steel components were modeled with six-node elements including mid-side nodes on
the plate surface. The explosive components were modeled with four-node QUAD
elements except where they interfaced the steel jacket, in which case a mid-side
node was included on the interface edge.

The time step used for the calculations was determined from the Courant
stability condition

Atcrit At (7)n

where

Atcrit is the minimum Courant stability time step,

tit is the distance between the two closest nodes in the system,

E is the Young's modulus for the stiffest material,

p is the density of the material,

and n is the number of time steps which we wish to represent the
shock wave in passing through the distance At.

The value of Atcrit was approximately 200 nanoseconds, for both the IM-46 and

M-IS mines. A value of n of four was used, so that the time step for the central F
difference explicit time integration method was 50 nanoseconds.

A. M-15 Mine Calculations. As indicated previously in Section 2D, two
different boundary conditions were used in modeling the M-lS mine. The primary
difference between the two calculations was in the base support condition. One
used a nonlinear spring support and the other used a rigid vertical base support.
The mesh configuration for both M-15 models is shown in Figure 10.
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Figure 10. Finite Element Mesh for the M-15 Mine

Eigenfrequencies were generated and the associated mode shapes were plotted
via the ADINA post-processor, PLOT3D [8]. The natural frequencies are important
for estimating the rate of response of a structure. For similar loadings, the
higher the natural frequencies of a structure, the faster the structure will
respond. In addition, rapid response causes higher strain rates to be effected.
This is significant for strain rate sensitive materials such as mild steel which
both of the subject mines embody. However, strain rate sensitivity was not
modeled in these calculations. The mode shapes associated with the lower eigen-
frequencies often give a good indication of the deformed shape which will result
from the application of typical loads. This was especially evident in the
deformation of the Th-46 mine. The lower eigenfrequencies and periods for the
M-1S mine are given in Table 3.
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TABLE 3, EIGENFREQUENCIES AND PERIODS FOR THE M-15 MINE

Spring Supported Mine Rigidly Supported Mine
Frequency Period Frequency Period

(cps) (sec) (cps) (sec)

36* 2.744 x 10-2 6426 1.556 x 10-4

3636 2.750 x 10-4 7899 1.266 x 10-:

6710 1.490 x 10-4 9685 1.032 x 10-4

8531 1.172 x 10-4 12186 6.205 x 10-

*Rigid body mode.

B. TM-46 Mine Calculations. The ADINA calculations for the TM-46
mine have not been completed. However, some of the salient features of the
model have been developed from progress made in studies of the mine thus far.
A drawing of the current mesh configuration is shown in Figure 11.

' 'I -TRUS
- ELEMENTS

Figure 11. Finite Element Mesh for the TM-46 Mine P
From our experience with the M-15 mine, we expected significantly different

materials properties in the outer steel jacket of the TM-46 mine. Measurements
showed that this was, indeed, the case. Several different sets of materials
properties were used to model the various steel components of the mine.

It was evident from the first that two particular difficulties would be
encountered in modeling the TM-46 mine. First, the difference in stiffness
between the steel plates and the air filled region leads to numerical problems.
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The collapse of the air filled region leads to the impact of the upper plate on
the middle plate. This phenomenon needs to be modeled rather carefully. Second,
the thin stepped top cover shown in the upper right part of Figure 11 leads to
a very inefficient load transfer from the top cover to the main mine body. On
the other hand, any viable failure mechanism for the mine must inevitably involve
a failure of the main mine body.

Since the ADINA code does not currently have a contact element to sense
when the top cover plate and middle plate impact, we have used nonlinear truss
elements to approximate the interaction of the two plates. This approach was
described in Section 3D.

Eigenfrequencies and mode shapes were also obtained for the TM-46 mine model.
The eigenfrequencies and associated periods for the lower modes are given in
Table 4.

TABLE 4. EIGENFREQUENCIES AND PERIODS FOR THE TM-46 MINE

Frequency Period
(cps) (sec)

3041 3.288 x 10-4

10466 9.555 x 10- 5

17068 5.859 x 10-5

31071 3.218 x 10- 5

All calculations described herein used the total Lagrangian formulation with
a lumped mass matrix with the exception of the nodal tie and truss elements. The
formulations used for these were material nonlinearity only and updated Lagrangian
analysis procedure, respectively.

5. DYNAMIC RESPONSE PREDICTIONS. Several modifications to the ADINA program
were made to assist us in interpreting the response predictions. These are
described fully in Reference 1. A summary of these modifications will be given
here. Due to the very large amount of stress-strain data available from the ADINA
results, some means of selectively extracting significant parts of the results was
desired. Since the component which involved the most credible failure mechanisms
was the steel jacket, we focused our attention on it. The modifications were made
in two different areas. First, routines were written to monitor the extreme
(maximum/minimum) stresses and strains in the steel components. Information on
the location, time, and value of these extreme stresses and strains were saved
and printed at intervals during the calculation. Second, routines were written
to calculate and monitor the second invariant of plastic strain. The value of
this quantity was compared to an input value in order to predict failure of the
steel jacket. Tables of the maximum value of this quantity were stored and
printed at preselected intervals.

In addition to the above modifications to ADINA, one further modification
was necessary to successfully obtain the solution to such long response times
using the explicit time integration scheme. In the standard ADINA program,
whenever plasticity occurs in the kinematic hardening model for a solid element,
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a linearized correction is applied to bring the stress tensor back to the
von Mises yield surface. Because the linearized correction leaves the stress
at a position in stress space along a tangent to the convex yield surface,
the resulting stress will be slightly outside the yield surface. An accumulation
of error results from this linearization and after many time steps causes imagi-
nary roots to be obtained in solving for the stress correction. It was necessary
to include the quadratic stress correction to avoid this problem. The details
of this modification are described in References 1 and 9.

A. M-15 Mine Dynamic Response. The calculations for both base support
conditions were run to 2.0 milliseconds of response time. This amount of response
time corresponds to seven and twelve times the period of the fundamental distor-
tional eigenmode for the spring supported and rigidly supported mine, respectively
(See Table 3).

The first predicted failure of the spring supported mine (simulating a mine
buried in soil) occurred at 0.67 milliseconds. The failures occurred in the
fuze well in the center of the mine as shown in Figure 12. Other areas of the

PREDICTED I @ 0.97 r'sTIMES OF 2 @ 0.97ms

FAILURE 3 @ 1. 03ms4 @ 1.88s /-,

CA AREAS OF SIGNIFICANT, BUT
LESSER PLASTIC FLOW

Figure 12. Predicted Failures of the M-15 Mine with Nonlinear Spring
Supported Base

mine casing had severe plastic flow as indicated in Figure 12; however, the
second invariant of plastic strain did not reach the failure value. Experiments
described in Reference 2 showed a similar behavior. Fuze wells were torn from
the steel jacket and explosive material was ejected from the inside cavity. The
deformed shape of the mine at the time of the first failure of the casing is 1 K

shown in Figure 13. In making this plot, rigid body motion of the mine on the
spring support was subtracted and the resulting displacements were magnified by Iz

.[
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15 to make the deformation pattern more graphic. The dotted lines in Figure 13
indicate the undeformed shape of the metal casing and the crosses indicate the
original nodal position. Contour plots of radial and hoop stress showed high
stress gradients in the neighborhood of the predicted rupture points. Extensive
cracking of the explosive filler material occurred in these calculations according
to the 0.1% tensile strain failure criterion. It would be reasonable to assume
that some of the crushed explosive filler material would be expelled through any
ruptures which occurred in the casing.

The finite element calculations of the M-15 mine on rigid roller support
were also carried out to 2.0 milliseconds. This configuration is a much more
highly constrained structure than was the previous case. This fact is reflected
in the higher natural frequencies (Tables 3,4). The failures predicted for this
configuration occurred in the same general area, the central fuze well. However,
the times required for failure to occur were much shorter than those for the
spring supported mine as one might expect. The failure of this mine was
predicted at two locations at times of 0.255 and 0.609 milliseconds. The 'st
failure of the fuze well occurred in the center on the initial downward cc
pression phase. In the spring supported response, the first failure L-.cu
in a rebound motion of the fuze well. These responses are described more .2',
in Reference 1.

B. TM-46 Mine Dynamic Response. The deformation of the TM-46
which we have modeled with the ADINA program has been nearly all in the art of
the top cover plate. One of the chief difficulties encountered has been in
trying to provide the appropriate model for the interaction of the top cover
plate on the middle plate. We have used the improvisation of nonlinear truss
elements (see Figure 11 and Section 4B) to simulate the impact of these two
components. A typical response of the system at an early time is shown in
Figure 14. As was the case with Figure 13, the dotted lines represent the
undeformed or original configuration before imposition of the blast load. The
vertical lines between the top cover plate and the middle plate represent the
nonlinear truss elements. Currently, the calculation has not proceeded to the
point where any failure of the main mine body can occur. The model of this
mine is still evolving.

6. CONCLUSIONS. The explicit time integration method gave the most *
accurate results for the shock loaded mines. This statement is based on the
smoothness of the stresses and strains as a function of time. We found that
second order corrections to assure that the stress state is on the yield surface
during plastic flow are required to keep the calculational procedure fromfailing. •

The parts of the outer steel jacket of the M-15 and TM-46 mines which are

work hardened in the deep drawing metal forming operation have significantly
varying materials properties. These variations in stress-strain relations
must be measured and modeled carefully since they have a direct influence on
mine failure under blast loads.

The soil medium supporting the mine and the nature of the loading of the
sidewall have a significant influence on the resulting response. It is recom-
mended that the soil medium be included explicitly in any future studies.
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Attenuation of the shock in the soil in the neighborhood of the mine sidewall
should be investigated.

Failure of the M-15 mine occurred in the area of the central fuze cavity
when subjected to a 13.8 MPa peak pressure, 6.5 kPa-sec impulse level blast
load in both the rigid support and soil support simulations. This agrees with
experimental tests in which catastrophic failure of the metal casing occurred,
as well as ejection of secondary fuze wells.

The initial deformation of the Soviet Th-46 mine was limited to the
response of the top cover plate. The finite element modeling with the ADINA
program has presented some difficulty in describing accurately the impact of
the top plate on the middle plate (plate containing the primary TNT charge).
This study is still in progress.
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NUMERICAL RESULTS OF TRANSIENT TWO-DIMENSIONAL HEAT CONDUCTION

R. Yalamanchili
Armament livision

Fire Control & Small Caliber Weapon Systems Laboratory
US Army Armament Research & Development Command

Dover, NJ 07801

ABSTRACT. A general expression is chosen, based on a prior research, for
a trasient two-dimensional heat conduction. The objective is to choose a
variety for Laplacien term, both implicit and explicit finite - differences.
and finite - element results. This is programed in Fortran IV for a digital
computer solution. The trunsient tcmpcruurus arc predicted due to a step
change in boundary conditions for a two-dimensional plate. The midpoint temp-
eratures are discussed in detail where the influence of boundary conditions
are minimum. The results are predicted for four Laplacian (different) approxi-
mations, explicit, Crank - Nicholson and standard implicit finite - differences
and finite - element approaches.

1. INTRODUCTION. Even though the exact analytical solution of heat con-
duction problems is disirable because these solutions are not only more accurate,
but also more explicit in parametric representations, it is frequently necessary
to settle for numerical solutions due to complex geometry and / or nonlinear
material properties or boundary conditions. An excellant collection of exact
solutions for linear problems with simple geometry, such as rectangles, cylinders
and spheres, are available in the literature (1). If the exact solution is com-
plex, such as an infinite mcrics solution, the computer programing is still
required and at the same time valid only for a specific problem and also may not
show explicitly the effects of parameters. If the geometry is complex, such as
rifling and variable wall thickness in a gun barrel or multi-layer variable
property solid, there is no other resort but application of numerical methods.

Various numerical methods have been used for solutions to the problems of
transient heat conduction. The most common are the finite difference method
(which represents a direct approximation of the governing partial differential
equation) and the finite element method introduced by Wilson and Nickell (10)
based on a variationalpninciple derived by Gurtin(3). The finite element method
is completely general with respect to geometry and material properties. Complex
bodies composed of many different anisotropic materials are easily represented
in this method. Temperatures or heat flux boundary conditions may be specified
at any point within the finite element system. Moreover, mathematically the method
can be shown to converge toward the exact solution as the number of elements is
increased. In spite of all these advantages, this method has not been used
extensively to solve transient heatconduction problems with radiation boundary
conditions.

There are various versions of finite difference approximations to the tran-
sient heat conduction problems. However, all these schemes can be classified
as either explicit or implicit type. In the case of explicit scheme, the un-
knowns are determined one at a time by the use of known quantities at one time-
step earlier and/or at nodes (already computed for the present time). If
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implicit, one equation for each node is to be generated in the entire region of
interest and finally, simultaneous solution of all these equations is required.
Therefore, the computational times for implicit schemes may be about three times
over that of explicit schemes. Numerous difference formulas can be formulated
for first-and second-order derivatives and also for the Laplacian term, dependent
upon the number of nodes available for taking a derivative, and also on the
weights of the data at those nodes. Usually, the difference formulas are con-
structed for first-and second-order derivatives by the expansion of the function
in Taylor's series and the use of an elimination process. The Laplacian term
is evaluated by use of the central difference formulas for the second-order
derivatives.

The method of weighted residuals (MWR) unifies many approximate methods of
the solution of differential equations that are in use today. For unsteady heat
uondutLion, Lie finite clement method and the usuul l'inite dii'ffremnue method wut
shown (12,13,14) to be special instances of the MWR with a general weighting
1'unction. in a more f'urmal way (5,6), vuriatiunal priviplus proposed by suvuxral
authors are all applications of the MWR. An excellent book in the use of the MWH(
was published recently by Finlayson(4). In literature, this technique is commonly
called the error distribution principle. The choice of approxiating functions in
an assumed solution form is crucial in applying the MWH. No way presently seems
to be available to select the approximating functions systematically for all
problems. Selection of approximating functions remains somewhat dependent upon
the user's intuition and experience, and this is often regarded as a major dis-
advantage of WR. Crandall(2) stated that the variation between results obtained
by application of different weighting funcions to the same approximate solution
is much less significant than the variations that can result from the choice of
different approximate solutions. Sometimes, one can obtain the exact solution
by use of the MWR, if the right choice is made in the selection of the approximate
solution form.

2. LAPLACIAN APPROXIMATIONS. Various finite-difference approximations
can be derived for the Laplacian term. Consider the rectangular coordinate systems
(x,y) and (*',y') separated by an angle, B as shown in Fig. 1. The relations of
various quantities between the two coordinate systems (x,y) and (x',y') can be
expressed as shown below:

x - x'cosB - y'sizB , y - x'sinB - y'cosB

___2T a2T a2T. a2T
T -T + sinB %T T o 2 T + 2eosBsinB -B2 T

axa x ay W.3' xy -3y

3T_ - T T 32 2  a2T imT + c02B TI "T + cosS !T- ,may,'-"" -sin2B = - 2cosBsinB xo 7
Ba, axa ya x3y a

a2 2T 82 a2 T 2T a2T
7 - - -- " (l/2) W a + (x/2-" +

a2T a2 T a2T 32T a2T 32T- , - (1 2  - (12y
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One can derive a second-order derivative by Taylor's series expansion and
central differenees. For example,

82T (T1 2i,= (i+i,i T~ + TilI~j/x

The subscripts 'i' and 'j' denote respectively the x and y directions or
coordinates Ax - Ay - h, for convenience. Now, one can derive five-point
finite-difference approximation for Laplacian term as shown below:

a2T 32T a2T B2T

+ax - .j z + = L16 - (T i.l j + T,J I + Ti,j+1  + Ti+l,j - 4Ti,j)/h2

32T a2T 32T 32T
+ .3- -+ 3 = LI = .j_ + T+ ijl + T++j +Ti+lj+1

Similar nine-point approximations are as follows: - 4T i,J)/(2h2 )

a2T D T  (1 2T a2T 32T 32T
-a3 ab c L19"- (T + (/)(4T + "c-' +T -d-0 LI T

-(TiI,j- + 4Til,j + Ti_l,j+1 + 4Ti,j-1 20Ti,j + 4Ti,j+ 1 + Ti+1,j-1

+ 4Ti+Ij + Ti+l,j+l)!6h2

a2T 2 ,2T %2T a2T a2T a2T
x =3 3) , -2+ %b + +*F + 2z -d' L17 19

- T T T T _8 +T
(Ti-lj-i + T i-,j ij+ + T,j-l 8Ti,J i,j+l Ti+l,J-l

+ T i+, j  + Ti+l,J+l )/3h
2

LI 19 is not listed, to the author's best knowledge, in any literature.
Hy the way, one can also obtain 1.1.7 19 by consideration of arithmaLie :average of
LI? and L19. Numerous approximations can be derived not only by this approach
but also by other methods.

3. UNIFICATION. Lemmon and Heaton(7) showed that for unsteady one-dimen-
sional heat conduction problems, the finite-element method and the finite-differ-
ence method are the special cases of the MWR. Yalamanchili and Chu (12) derived
difference equations for transient two-dimensional heat conduction problems by
all three techniques (i.e., finite-element, finite-difference, and MWR), and
they were able to bring them into the same format. The above Laplcian term
approximations were considered in addition to another one which is not consistent.
The subscript 'K' is not used on these equations to indicate time. Appropriate
additional subscripts should be introduced into these approximations before final
difference equations can be obtained. Even though the application of MWR-Collocation
yicds (12) finite-difference equations by the use of any ,ap]acinn term approxi-
mations, this is not the case for finite-element difference equation. The weighting
function is the Dirac-Delta function for mWR-Collocation. The approximate
solution form chosen for the method of' weighted residulas (MWt) is in the form
of sum of products of nodal temperatures and spatial distribution functions.
The nodal temperatures are the unknowns; therefore, the weighting function will
be the spatial distribution function for the MWR-Galerkin method. If only
Li7 19 is chosen as the Laplacian term approximation, one can easily prove (11)
that the MWR-Collocation yields finite-difference equation and the NWR-Galerkin

41 yields finite-element difference equation. Therefore, one can conclude that the
finite-element and finite-difference methods belong to the class of MW1

4. ACCURACY. The comparison of accuracy of various Laplacian term approxi-
mations mentioned above, in te.-ms of order of magnitude, reveal: L16 is the most
accurate 5-point formula; Li7 19 uses nine points with no increase in accuracy;
L17 is worse than L16; and L19 is by for the most accurate. It is important to
remember that the number of computations either in generating the coefficient
matrix of the system of algebraic equations or in their solution procedures
increases significantly with the increase in the number of points in the differ-
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ence equation. Since L16 and L17 19 are of the same accuracy, naturally L16 may
be preferred because of the less number of points involved. Therefore, the finite
element method can not be the best as far as accuracy is concerned because L19
is by far the most accurate from theoretical considerations.

5. NUMERICAL EXPERIMENTS. The difference equation may be summarized into the

following form whether it is based on finite element, finite difference, MWR-
Collocation, or MWR-Galerkin methods:

ATi-IJ-I,k+l + BT.-l,j.k+l + ATI-1.J+I~k+l

+ BTI,j_.,k+l + CTIJ,k+I + BTIj+lk+ + ATi Ij.k I

+ BTI+l,j,k+l + ATl+I j+Ik+1 " DTI-I,J.I1k + ETI-.ij.k

+ DTi..,J+Ik + ETi j-+.k + + XTjj+l,k

+ DT±+I.j-I,k + ETI+Ij,k + DT+1lj+l,k

However, the coefficients A,B,C,D,E, and F are different depending upon the
Laplacian term approximation and the MWR-Collocation or MWR-Galerkin. These are
shown in Table 1 and also in stencil form in Figure 1. The parameter in this
equation allows a weighted average of the sum of two second order spatial deriv-
tives at two discrete times. An explicit scheme can result when * is set to zero;
othersise, an implicit scheme will be the result for the remaining range of para-
meter, *.

TABLE 1 - COEFFICIENTS OF VARIOUS DIFFERENCE EXPRESSIONS

COEFF IC I ENTS
METHOD A B C D E F

FE o 1- o6

FD/I'34R-C

o2 +-9)o 1(6 2 ) .- )S
L 1729 -1 13TP

L 16 0 -2 0 1 8 . 0 2 (1-4) 8 1 08 (1-4) *

Li? -10 0 1+4*0 (1 4) 0 1-4 (1 -4) 0

L19 -'- 3+-*Z4 Lo 1- 2 z-)*

3 34~ 3 3 3

MWR-G

17i 19. _. T.,, L 9 31 a1 12(1.4) 741i
36 9 3 1 3o 1

Ii -L4 1 i*(.) 2 1-) -i4)S 0

L. 16s" 36

L :7 3 0 V 3 9

3. 19 1 9 3*k Lo a30.0-( 4)T
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FE ~ AV

FIGURE 1 TWO-DIMENSIONAL ELEMENTS AROUND (x11 ,

The stability and nonoscillation limits of various schemes and due to various

criteria are shown in Table 2.

TABLE 2 - STABILITY AND OSCILLATION LIMITS

Break-even (or maximum) 9 for

Method Laplacian •
Stability Nonoscillation

General VonNeumann Dusinberre

MWR-C/FD 0 L16 .125 .125 .125 .0625
L17 .25 .5 .25 .125

L19 .1875 .1875 .15 .0937

L1719 .25 .375 .1875 .125

MWR-G L16 .0139 .0139 .0625 .0069

L17 .0833 .2222 .1111 .0417

L19 .0208 .0208 .0667 .0104

L1719 .0416 .0416 .0833 .0208

NWR-C/FD 0.5 L16 No Limit No Limit .25 .125

LI i " .5 .25
LI9_ " ".3 .1875

L179 ".375 .25

MWR-G L16 ""12 .0139

L17 "2222 .0833
L19 ""1333 .0208

MR-G/FE L1719 .1667 .0416

MWR/FD 1.0 ALL No limit No Limit
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These are also available elsewhere (11) for arbitrary values of parameter, *.

In general, the MWR-Galerkin requires less step sizes than the fWR-Collocation

or finite differences to enforce stability or nonoscillatiuns or both. Also, the

Dusinberre criteria is more conservative than the general or VonNeumann stability

criteria. The nonoscillatory criteria is more restrictive than any stability

criteria. Even though the finite element method is unconditionally stable

according to general or VonNcumann criteria, there is a limit due to Dusinberre

criteria and also another further lower limit for nonoscillations.

It is possible to generate either completely explicit scheme ( -o) or standard

implicit scheme (-1) or numerous other implicit schemes for arbitrary values of

parameter (o < 1<). The coefficient matrix of these systems of equations is

symmetric and also banded. Special numbering system for the identification of

unknown nodal temperatures minimized the width of the banded matrix. The storage

required for nonzero elements and also the number of computations will be minimum

if the band width is minimum. The typical matrix is of the type, 100 by 100.

1Iowevcr, this is l)asarse mattrix and the rioiz'o clmunit.L arc in a bjock-
tridiagonal matrix form. Therefore, the components of unknown vector can be

grouped into subsets, and these subsets can be eliminated, as in the Gaussian

procedure, a group at a time. Here, the coefficient matrix is decomposed into

upper triangular matrix and a lower triangular matrix, each one will be in block-

bidiagonal matrix form. There is also another procedure for sparse matrices

where a specified number of lower and upper diagonals have nonzero elements.

Solution procedure is done by means of Gauss elimination with column pivoting.

Optimization of these algorithms, for core storage and number of computations,

is essential because of repetition for each time-step.

6. EXAMPLE. A two-dimensional plate, 2 by 2, with a unit thermal diffusivity

is considered. Initially, the temperature is zero everywhere. Suddenly, all

four sides are exposed to unit temperture. The temperature distribution is

determined as a funciton of time until steady state (0.8) is reached. The midpoint

temperatures are shown in Table 3. The data marked asterisk (*) is more accurate

than the other data at that time. This notation is used in all the tables.

None of the schemes maintained the same accuracy for all times. Therefore,
one can never tell which one will be more accurate at any given time. Even though

there is tremendous difference in truncation error between L19 (h 6 18 T + o(h 8 ) )
and h~ J 4,504 3x4 ay4

L17 19 (- x + 0(h 4 )), the experiments show very little difference in

results between the two approximations either in MWIt-Collocation or MW14-Galerkin.

For small times (such as 0.05), the MWR-Galerkin predicts the results negative,
very low and off at least by an order of magnitude. Therefore, the MWR-Collocation

or finite differences should be preferred for small times. Since the MWR-Galerkin
is not accurate for small times, the finite element method (0=3, L1719, MWR-
Galerkin) is not desirable for small times.
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TABLE 3 - MDIPOINT TEMPERATURES FOR AL = .2, At/A L2 = .25, 0-.5

- - - _ T - - - -a- -E-e aT m e

2 I .41Method i Lalc j 0 1 1 . .4 .7
I-- - -- - ----- * --- ---------- 4 ---- - ---------------

MWR-C/FD I L16 .01601 .1159 1 .4106 1 .7751* .9594*
L17 1 .01539I .1111 I .3978 ..7639 1 .9556
L19 .01589*1 .1145 .4064 .7715 .9582I -, 1 .7678
L17191 .01570 .1130 I .. 7678 .9569

S_----- -
MWR-G L16 -.00160 .1023 .4245 .7893 .9641

L17 -.00178 I .09731 1 .4111 I .7786 I .9606
L19 -.00150I .1007 I .4200 I .7858 I .9630

MWR-G/FEB L17191 -.00152 .09906* .4155 1 .7822 .9618
S-- S---------------- ~ l..--- .~-- ----- .---

ADI (9) I .01579 .09333 1 .4035 .775321 .96003
---- -------- --. ----.

Exact .09883 1 .40354 .774861
x -t - ---- - ............

The midpoint temperatures for large time-steps are shown in Table 4. Most of
the conclusions mentioned above remained the same. The MWR-Galerkin under
estimates for one-quarter of steady state times and over estimates for the
remaining transient period.

TABLE 4 - MIDPOINT TEMPERATURES FOR AL=.2, At/ AL2=2.5, 0".5

RIT;nETMiiEr;-a tT-T e -- - -I,--- - - --- 1~1- ---- -----
Metod Laplacian .1 1 .2 .4 1 .7

-- -- -- - ---- ---MWR-C/FD L16 .0969* .3773* .7843 1 .9505
L17 .0934 1 .3653 ..7729*1 .9461
L19 .0959 .3735 .7806 .9491
L1719 0947 .3696 .7768 .9477

MWR-G L16 .0839 .3769 i .7951 .9498
L17 .0804 1 .3646 7850 .9465

.8L19 . 3728 .7919 .9488

0818 .3686 .7885 .9477
--L -_ _ L - - - - -

The midpoint temperatures for standard implicit schemes are shown in Table
5. The step sizes are same for the results in Tables 4 and 5. However, the
results for small times, such as 0.1, are very bad for standard implicit scheme
(0-1). These are higher by about 50 percent. In general, the results are higher
for small times and lower for large times. The cross over point may be about
one-q-arter of steady state time. The optimization of 0 with respect to step

sizes may very well improve the accuracy significantly.
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TABLE 5 - MIDPOINT TEMPERATURES FOR AL= .2, At/AL2 =2.5, f*i

Midpoint Temperature at Time

Method Lalai .1 .2 4

MWR-C/FDI L16 .1514 .3572 g .6838 .9022

L17 .1470 .3488 I .6739 .8965
L19 .1500 .3545 I .6806 I .9003
L1719 .1486 .3518 I .6773 1 .8984III I
4 ~ ~~ - --------------------

M"-G L16 .1475 I .3600* .6949* .9093*
L17 .1430* I .3b15 I .b851 1 .9039
L19 .1461 1 .3572 .6917 i .9075
L1719 .1446 .3544 .6884 .9057

The results are supposed to be nonoscillatory and also stable irrespective
of any criteria, according to theory (11) and Table 2. Even though the step
sizes are large for the results of Tables 4 and 5, further larger time-steps are
used to demonstrate this hypothesis. The results are shown in Table 6. The
trend is similar to Table 5 as far as accuracy is concerned.

TABLE 6 - MIDPOINT TEMPERATURES FOR 41,= .2, At/A L2 = 5, f =1

Midpoint Temperatures at Time

Method Laplacian .2 .4 1 .6 1 .8
------------- --- ---- .---- ---- -----
MWR-C/FD L16 .3279 1 .6198 I ,7994 .8970

L17 .3212 .6112 I .7921 I .8918
L19 .3258 .6170 1 .7970 I .8953

L1719 •3236 .6142 •7947 .8936I, I I
MWR-G JL16 I .3290* I .6275* .807 0

L17 .3223 , .6189 f .8006 .8983
L19 .3268 .6247 .8053 .9016

L1719 .3246 .6218 .8030 .9000

The midpoint temperatures for explicit schemes are shown in Table 7. Due
to the use of MWR-Galerkin, all the results are meaningless because of unbounded
oscillations and thus unstable characteristics. The computations are performed
only 5, 13, 6, and 9 time-steps before the absolute midpoint temperature exceeded
a certain arbitrary value due to L16, LI, L19, and L1719 respectively. Thus,
L17 may be considered as less oscillatory and more stable than the other
Laplacian approximations. This conclusion is identical to theoretical predictions.
None of the approximations are good at time, .05, due to MWR-Collocation or
finite differences. For other times, L17 is the most accurate of all. The results
are supposed to be oscillatory according to theory even for KKR-Collocation/
Finite-Differences except due to L17 and L1719. But, this is not the case in
practice. However, all are stable from both theory and experiment.
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TABLE 7 - MIDPOINT TEMPERATURES FOR AL=.2, At/AL2  = .25, *=o

----------- =Temlre------- Ue-"a,'R-e me

method Laplacian .05 .1 .2

MWR-C/FDi L16 1 .0039 11.1055 .4204 1 .7857 1 .9630
1 .4070* .7746* ' 9593

L17 .0038 .1 1010*, .9593L19 .0039 .1043 .4163 1 .7822 I .9618
L1719 .0039 .1028 .4119 1 7785 1 9606"

The time-step is doubled to single out further the most nonoscillatory and
sLable scheme and also accuraLe. The r-sults are shown in Table 8. h MWl-
Collocation of finite differences and L17 may be such a scheme. None of the
Laplacian term approximations arc good for small time. The results arc supposed
to be oscillatory for all methods and Laplacian term approximations. However,
L17 and L1719 escaped such disturbances. Thus one doesn't have to enforce strictly
the limits given in Table 2. L1719 is supposed to be unstable according to Dusin-
bcrre. However, it is not the case as shown by numerical experiments. Therefore,
the Dusinberre criteria may be more conservative than in reality. In the case of
MWR-Collocation or finite differences, the number of time steps required to exceed
a certain arbitrary value are 13 and 26 respectively for L16 and L19. The similar
order is 4,5,5,4 for L16, L17, L19, L1719 and MWR-Galerkin.

TABLIE 8 -MIDPOINT TEMPERATURES FOR AL = .2, At/AL2 = .5, *=0

- -Mi--dpont" Temperature at Time
I I I

Method ,Laplacian .06 a .1 - .2 I .4 .76

--- - -- -1121 - 39
MWR-C/FD L17 10 *12118 .7749* .9630

L1719 0 11245 .3864 .7686 9594*

7. CONCLUSTONS. Various numerical methods, in particular, finite element (FF),
Finite dirl'erurivu (Fu) and weighted residuals methods (MWR), are reviewed. It
was shown that the MWR-Collocation yields FD whereas the MWR-Galerkin yields FE
and thus it may be concluded that the FE and YD belong to the class of MWR.
Several Laplacian terms, including the most accurate 5-node and 9-node formulas
as well as another new one (L1719) that unified FE,FD, and MWR; were examined by
order of magnitude analysis to compare their accuracy. The finite element method
can not be the best as far as accuracy is concerned, Numerous difference equations
are given and the numerical details of generating the system of equations, their
characteristics, and their solution procedures are discussed. The stability and
nonoscillation limits are given in the form of table for explicit, Crank-Nicholson
type (#=0.5), and standard implicit schemes. They do point out that the most
accurate scheme does't necessarily possess the best stability and nonoscillation
characteristics. It is also clear that the MW-Galerkin requires less step sizes
than the KWR-Collocation or finite differences to enforce stability or nonoscil-
lations or both.
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The transient temperatures are predicted due to a step change in boundary
conditions for a two-dimensional plate. The numerical experiments are performed
with all five Laplacian term approximations; the MWR-Collocation or finite-differ-
ences; the MWR-Galerkin/finite-element; and also explicit, Crank-Nicholson type,
and implicit types to observe the accuracy, stability, and oscillation character-
istics. The midpoint temperatures are only tabulated to avoid the influence
of boundary conditions.

None of the schemes maintained the same accuracy at all times. Therefore,
one can never tell which one will be more accurate at any given time. Even though
there is tremendous differences in truncation error between L19 and L1719, the
experiments show very little difference in results between the two approximations.
The MWR-Galerkin/finite-element underestimates for small times and thus these may
not be disirable for several time steps. The standard implicit scheme ( =I)
overestimates for small times by about 50 percent and thus Crank-Nicholson type
(0 = .5) is preferred for initiation of computations at least for several time
steps. The temperatures are lower for large times with standard implicit scheme.
The optimization of 0 with respect to step sizes may very well improve the accur-
acy significantly. It is confirmed that the results are nonoscillatory and stable
for standard implicit schemes. L17 is found to be less oscillatory and more
stable and also more accurate than the other Laplacian approximations for explicit
schemes. The superiority of L17 in nonoscillatory and stable characteristics is
also confirmed by theory. There is a difference, in break-even or maximum step
sizes, between theory and practice to enforce stability or nonoscillations or
both. Thus, slightly higher than the step sizes given by theory may be utilized
in practice. The Dusinberre stabiltiy criteria may be more conservative than in
reality. In general, the MWR-Collocation or finite-differneces is better than the
MlR-Galerkin or finite-element.
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SALOME, A STRUCTURED AND LOGICALLY MINIMAL ENSEMBLE

OF PROGRAMMING CONSTRUCTS

Royce W. Soanes, Jr.
U.S. Army Armament Research and Development Command

Large Caliber Weapon Systems Laboratory
Benet Weapons Laboratory
Watervliet, NY 12189

ABSTRACT. An overview of the Salome structured programming language
will be given, along with an appendix briefly describing its syntax and
semantics. Salome has been designed with the Fortran programmer in mind. The
Salome source language is supported by a translator having a target language
of standard Fortran, and Fortran code may be injected into Salome source code
when needed. The Salome translator has been written in Salome and Fortran.

1. OVERVIEW. The acronym SALOME stands for structured and logically
minimal ensemble (or selection and looping operations made easy). The term
"structured" refers to the gotoless nature of the logical control statements
of Salome. While the power of the goto statement has corrupted many programs,
the logical control statements of Salome virtually eliminate the need to use
goto statements and labels in programs. The phrase "logically minimal" refers
to the fact that the variety and semantic ambiguity of the structured logical
control statements is kept to a minimum.

There is one looping construct and one selection construct in Salome,
while other languages may force the programmer to learn several. Flexibility
and unambiguous semantics are stressed in Salome - not variety.

Blanks are as Important in Salome as they are in ordinary English text.
The use of blanks as delimiters enhances readability, eliminates extraneous
punctuation, and allows for greater brevity of syntax. Although Salome is
delimiter oriented (as opposed to line oriented) there is no general end of
statement or between statement delimiter in Salome. A small penalty one pays
for this feature is that blanks are not allowed in assignment statements.
This was considered to be a small price to pay for the elimination of a lot of
extraneous semicolons.

The Salome language is supported by a one pass translator whose target
language is Fortran, hence, when one writes a program in Salome, one is in
effect writing in two different high level languages at the same time. The
translator is in turn supported by a package of Fortran callable string
manipulation routines. The primary reason Fortran was selected as the target
language was to benefit those unfortunate programmers who are inextricably
mired down in a Fortran environment when Fortran is more lacking in structured
programming constructs than any other high level language except Basic. A
widely used high level target language also assures greater portability of f
Salome and its translator.
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The file produced by the Salome translator consists of the original
Salome source code inserted as special Fortran comments interleaved with the

generated Fortran code. When Salome syntax errors are caught, they are
pointed out by a string of dots. If there are syntax errors in a Salome
routine, only the first one in that routine is flagged and the rest of the
code in that routine is ignored. No attempt at error recovery is made because
one can't be absolutely positive about what the programmer actually intended,
and guessing usually uncovers syntax errors that aren't.

The reason for the interleaving of the Salome source code as comments
with the generated Fortran code is to enable the programmer to relate any
syntax errors picked up by the Fortran compiler (and not picked up by the
Salome translator) back to the original Salome source code. The Salome
translator does not check for things that the Fortran compiler is going to
check for anyway.

Since the appendix of this paper contains a brief but fairly complete
description of Salome, no further details will be described here. Instead, a
small subroutine written in Salome along with the generated Fortran and the
interleaved file are presented as a small exercise in deduction. If one knows
Fortran and one reads the interleaved file carefully, one can deduce the exact
semantic meaning of the Salome routine.

SALOME SOURCE

SUB LININT ( N X Y XI YI )-- ------------------------------------ LININT
-- LINEAR INTERPOLATION

N-NO. OF POINTS.
X-ABSCISSA ARRAY.
Y-ORDINATE ARRAY.
XI-ABSCISSA AT WHICH INTERPOLATION IS DESIRED.
YI-INTERPOLATED RESULT.
X IS ASSUMED TO BE SORTED IN ASCENDING ORDER.

DIMXI , Y I.
-- ASSUME AT LEAST 2 POINTS OF DATA

-- GET PROPER SUBINTERVAL USING BINARY SEARCH
IL-i IR-N
DO # IL+l - IR #

-- COMPUTE INDEX OF ABSCISSA MIDWAY BETWEEN IL AND IR
IMl(IL+IR) /2
-- REDEFINE IL OR IR AS IM
IF XI < X(IM) , IR-IM ; IL-IM F1
-- ASSUME IL AND IR ARE STILL IN PROPER ORDER
@ IL < IR @ OD

DX-X( IR)-X(IL) DY-Y( IR)-Y(IL)
-- ASSUME LENGTH OF SUBINTERVAL IS POSITIVE
@ DX >0. @
YI-Y( IL)+(DY/DX) *( XI-X(IL) )

RET END
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GENERATED FORTRAN

SUBROUTINE LININT(N,X,Y,XIYI)
C ---- LIKNT

C LINEAR INTERPOLATION
C
C N-NO. OF POINTS.
C X-ABSCISSA ARRAY.
C Y-ORDINATE ARRAY.
C XI-ABSCISSA AT WIHICH INTERPOLATION IS DESIRED.
C YI-INTERPOLATED RESULT.
C X IS ASSUMED TO BE SORTED IN ASCENDING ORDER.
C

DIMENSION X(t),Y(1)
C ASSUME AT LEAST 2 POINTS OF DATA

IF(N.GT.1) ",0 TO 1000
WRITE(6,1001)

1001 FORMAT(/////,' N > I LS FALSE IN LININT')
CALL EXIT

C GET PROPER SUBINTERVAL USING BINARY SEARCH
1000 IL-I

TR"N
1002 IF(IL+I.EQ.IR) GO TO 1003

C COMPUTE INDEX OF ABSCISSA MIDWAY BETWEEN IL AND IR
lt4,(IL+IR) / 2

C REDEFINE IL OR IR AS IM
IF(.NOT.(XI.LT.X(IM))) GO TO 1005
IR-IM
GO TO 1004

1005 IL-IN
C ASSUME IL AND IR ARE STILL IN PROPER ORDER
1004 IF(IL.LT.IR) GO TO 1006

WRITE(6,1007)
1007 FORMAT(////T,' IL < IR IS FALSE IN LININT')

CALL EXIT
1006 GO TO 1002
1003 DX=X(IR)-X(IL)

DY-Y( IR)-Y(IL)
C ASSUME LENGTH OF SUBINTERVAL IS POSITIVE

IF(DX.GT.0) GO TO 1008
WRITE(6,1009)

1009 FOPMAT(/////,' DX > 0. IS FALSE IN LININT')
CALL EXIT

1008 YI-Y(IL)+(DY/DX)*(XI-X(IL)) .
RETURN
END
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INTERLEAVED SALOME AND FORTRAN

C--S--SUB LININT ( N X Y XI YI ) - LININT
SUBROUTINE LININT (N,XY,XIYI)

C - - -- LININT
C-_S-_-- LINEAR INTERPOLATION
C LINEAR INTERPOLATIONc__s__(--
C
C--S-_N-NO. OF POINTS.
C N-NO. OF POINTS.
C--S--XABSCISSA ARRAY.

C X-ABSCISSA ARRAY.
C--S--Y-ORDINATE ARRAY.
C Y-ORDINATE ARRAY.
C--S--XImABSCISSA AT WHICH INTERPOLATION IS DESIRED.
C XI-ABSCISSA AT WHICH INTERPOLATION IS DESIRED.
C--S--YI-INTERPOLATED RESULT.
C YI-INTERPOLATED RESULT. -

C__S__X IS ASSUMED TO BE SORTED IN ASCENDING ORDER.
C X IS ASSUMED TO BE SORTED IN ASCENDING ORDER.
c__s__ --)
C
C--S--DIN X 1 , Y I

DIMENSION X(),Y(1)
C--S-.-- ASSUME AT LEAST 2 POINTS OF DATA
C ASSUME AT LEAST 2 POINTS OF DATA
C-_S__@ N > 1 @

IF(N.GT.l) GO TO 1000
WRITE(6,1001)

1001 FORMAT(/////,' N > I IS FALSE IN LININT')
CALL EXIT

C--S---- GET PROPER SUBINTERVAL USING BINARY SEARCH
C GET PROPER SUBINTERVAL USING BINARY SEARCH
C--S--IL- 1 I.R-N

1000 IL-1
IR=N

C--S--DO # IL+1 - IR #
1002 IF(IL+I.EQ.IR) GO TO 1003

C--S-- -- COMPUTE INDEX OF ABSCISSA MIDWAY BETWEEN IL AND IR
C COMPUTE INDEX OF ABSCISSA MIDWAY BETWEEN IL AND I
C--S-- I19,(ZL+IR) 12

IN-(IL+IR) /2
C-_S-_ -- REDEFINE IL OR IR AS IM
C REDEFINE IL OR IR AS IN
C--S-- IF XI < X(IM) , IRmIM ; IL"IM Fl

IF(.NOT.(XI.LT.X(IM))) GO TO 1005
IR-IM
GO TO 1004

1005 IL-IN
C--S-_ -- ASSUME IL AND IR ARE STILL IN PROPER ORDER
C ASSUME IL AND IR ARE STILL IN PROPER ORDER
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C--__ @ IL < IR @ OD
1004 IF(IL.LT.IR) GO TO 1006

WRITE(6,1007)
1007 FORMAT(//III,' IL < IR IS FALSE IN LININT')

CALL EXIT
1006 GO TO 1002

C--S--DX-X(IR)-X(,IL) DY-Y(IR)-Y(IL)
1003 DX-X( IR)-X(IL)

DY=Y( I)-Y(IL)
C--.S_._-- ASSUME LENGTH OF SUBINTERVAL IS POSITIVE
c ASSUME LENGTH OF SUBINTERVAL IS POSITIVE
C__s__@ DX > 0. @

IF(DX.GT.O) GO TO 1008
WRITE(6,1009)

1009 FORMAT(/////,' DX > 0. IS FALSE IN LININT')
CALL EXIT

C-S-.YI-Y( IL)+(DY/DX)* (XI-X(I[,) )
1008 YI-Y(IL)+(DY/DX)*(XI-X(IL))

C..-S-.RET END
RETURN
END
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APPENDIX

A QUICK GUIDE TO THE SALOME PROGRAMING LANGUAGE

1. Definition of Isolated String

An isolated string resides on a single line, is preceded by one or more
blanks (or begins in Column 1) and is followed by one or more blanks (or
ends in Column 72).

All Salome keywords must be isolated strings containing no blanks.

2. Comments

A. A 'tack on' comment may stand alone on a line or it may be tacked onto
the end of another statement.

Ex.

-- TACK ON COMMENT STANDING ALONE
A-B+C - TACKED ON TACK ON COMMENT

'--' is the keyword for tack on comments

The tack on comment has essentially the same form as the ADA comment.

B. A delimited comment may occupy more than one line.

Ex.

(-- THIS IS
A DELIMITED
COMMENT-)

'(--' AND '--)' are the keywords for delimited comments.

Delimited comments may be used to temporarily disable certain sections
of executable code and they may be nested.

3. Injected Fortran

Fortran statements may be injected into a Salome program when needed.

Ex.

F COMMON (100),B(50)
F A-B*C

'F' is the keyword for injecting Fortran. The Fortran statement
begins Immediately after the blank following 'F'.
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4. Variable Declaration Statements

The correspondence between Salome variable declaration keywords and
Fortran variable declaration keywords is given by the following table.

SALOME FORTRAN

DIM DIMENSION
INT INTEGER
REAL REAL
DP DOUBLE PRECISION
LOG LOGICAL
EQV EQUIVALENCE

Ex.

DIM X 10 20 , Y 100 . translates to
DIMENSION X(10,20) ,Y(100)

INT A , B , C 10 20 30 . translates to
INTEGER A,B,C(10,20,30)

The aforementioned keywords plus ',' and '.' are the keywords for
declaration statements.

* Ends all variable declaration statements.

,' Separates variable references in all variable declaration statements

except the equivalence statement.

,' Separates variable group references in the equivalence statement.

Ex.

EQV A B C , K(5) L M(O) . Translates to
EQUIVALENCE (A,B,C),(K(5) ,L,M(1o))

Note that a string such as A(10,20) may appear in an equivalence statement
but not in any other variable declaration statement.

5. Assignment Statements

Salome assignment statements must be isolated strings containing no
blanks. They are otherwise equivalent to Fortran assignment statements.
If blanks are desired in assignment statements, they may be injected as
Fortran.

Ex.

A-B*C+D P-Q*R

F A- B+C* D/E
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6. I/o

A. The keywords which begin I/O statements are:

#IN' 'OUT' 'R' 'W' IRV' 'WF' 'RU' 'WU' 'FMT'

They may be read as follows:

IN - Input on device no.
OUT - Output on device no.
R - Read
W - Write
RF - Read in Format
WF - Write in Format
RU - Read Unformatted
WU - Write Unformatted
FMT - Format

B. The rest of the I/O keywords are:

I(C ')' '. 'EOF:' 'ERR:'

'(' and ')' bracket format strings in 'R' and 'W' statements.

'.' ends all I/0 statements except for the IN and OUT statements.

'EOF:' precedes any end of file label name.

'ERR:' precedes any error label name.

Ex.

IN I

OUT 1OUT

R I X Y ( 13 2F10.0 ) EOF: END-OF-DATA

W I XY ( ' I-' 13 ' X-' E14.7 ' Y-' E14.7 )

R F1 A B EOF: ENDDATA.
FMT F1 8F10.0 .

W ( ' PLAIN HOLLERITH ' )

Note that format strings in 'FMT' statements are not enclosed in
parentheses as they are in 'R' and 'W' statements.

Format references in RF, WF, and FIr statements may be any isolated
string containing no blanks.
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7. External Subroutine Calls

External subroutines are called by writing the name of the subroutine

followed by its argument list, if any. No 'call' keyword is used and
English Salome keywords may not be used as subroutine names.

Ex.

EXIT - CALL TO EXIT

ADD ( A B C ) - ADD A TO B GIVING C

DEFSTR ( ABC ' A B C ' ) - DEFINE STRING

The only keywords associated with an external subroutine call are '(' and

Arguments in an external subroutine call must be isolated strings. The
only argument which may contain blanks is quoted Hollerith. Arguments are
not separated by commas.

8. External Subprogram Declaration Statements

The keywords beginning external subprogram declarations and their Fortran
counterparts are given by the following table.

SALOME FORTRAN

SUB SUBROUTINE
FUN FUNCTION

IFUN INTEGER FUNCTION
RFUN REAL FUNCTION
LFUN LOGICAL FUNCTION

DPFUN DOUBLE PRECISION FUNCTION

'(' and ')' are the only other external subprogram declaration keywords.

Additional keywords necessary to complete the definition of an external
subprogram are:

SALOME FORTRAN

ENTRY
RET RETURN
END END

Ex.

SUB INIT - INITIALIZATION ROUTINE

SUB MULT ( A B C ) - MULTIPLY B BY A GIVING C
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FUN PROD ( X Y ) - Product of X and Y

Parameters in an external subprogram declaration must be isolated strings
containing no blanks.

9. Internal Subroutine Calls

External subroutine calls in Salome are quite similar to those of Fortran,
but Salome also has the facility for defining and calling internal
subroutines. These sections of code are called internal because they
belong to the program or subprogram which uses them and they may not be

called by any other external subprogram.

An internal subroutine name may be any isolated string.

An internal subroutine is called by enclosing its name in double quotes
( not two single quotes ). The double quotes are the only keywords
associated with the internal subroutine call.

Ex.

" READ INPUT DATA

INITIALIZE ARRAYS

No arguments are passed to internal subroutines. All data in the calling
progam is available to the internal subroutine.

10, Internal Subroutine Declaration Statements

Internal subroutines are declared at the end of the calling program
( after a return or call to exit ) by writing 'TO' followed by the
internal subroutine name enclosed in double quotes, followed by any code,
followed by 'OT'.

Ex.

EXIT ( OR RET
TO " READ INPUT DATA

R X Y Z ( 3F10.O ) . OT

Internal subroutines may call other internal subroutines within the same

program or subprogram.

Internal subroutines have exactly one exit point at 'OT'.

The Salome internal subroutine simplifies the simulation of recursion
considerably.
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11. if Statement

The 6 keywords involved in the If Statement are:

VIFO ' ? $1 ,/1 1. ; FI'

The basic functions of these keywords during translation time and run time
are:

'IF' Tells the translator that the first Boolean expression is about to
begin.

',' Ends a Boolean expression and selects the statement sequence follow-
ing to be executed if the Boolean is true. This keyword may be
read: 'then'.

'$' Ends a Boolean expression and selects the statement sequence follow-
ing to be executed if the Boolean is false. This keyword may be
read: 'Then Don'z Select'.

'/' Halts execution in the if statement if the previous statement
sequence has been executed and tells the translator that another
Boolean expression is about to begin. This keyword may be read:
'Otherwise,If'.

';'' Halts execution in the if statement if the previous statement
sequence has been executed and selects the statement sequence
following to be executed if no other statement sequence has yet
been executed. This keyword may be read 'Otherwise'.

'fl' ends the If Statement.

The Relational and Boolean operators used in Boolean expressions are:

#< 1>1 '<M '>-' '-w '/' 'AND' 'OR' 1NOT'

Relational operators must not cortain blanks, but they need not be
isolated. The Boolean operators 'AND', 'OR' and 'NOT' must be isolated
and not contain blanks.

The general form of the If Statement is as follows:

IF BI ,SI
B2 ,S2/
B3 ,S3I

BI ,SI

BN , SN; S F1
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Where BI through BN are Boolean expressions and SI through SN and S are

sequences of statements.

If Statements may be nested to theoretically any level.

Ex.

IF 00. AND B>0. , XUA*B ; X-0. F1

IF 1/-0 , 1-0. Y-0o. Z-O. F

IF X < A * F--i. /
X > B , F-I. ; F-O. F1

IF I<1 , I1i /
D>N , I-N F

12. Assertion or Assumption Statements

One may very quickly insert error checking code into a program via the
assumption or assertion statement.

This statement consists of nothing more than a Boolean expression
delimited on both sides by the keyword '@'.

Ex.

SUB INTERP ( N X Y XI YI ) - INTERPOLATION ROUTINE

@ N>i @

END

The assumption that N > I in subroutine interp will translate into the
following typical Fortran code.

IF(N.GT.I) GO TO 1000
WRITE(6, lOOt)

1001 FORMAT(/////,' N>l IS FALSE IN INTERP')
CALL EXIT

1000 CONTINUE

The Salome assertion statement is considerably less verbose than the
corresponding Fortran error checking code and will therefore make it far
easier for the programmer to give his program the higher order of
intelligence it needs in order to detect bad data or situations and
subsequently notify the progrmmer in fairly explicit terms.

The write statement generated by the assertion statement always writes to
6.
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13. Goto Statements and Labels

Although they will seldom be needed in a well written Salome program, goto
statements and labels are available in Salome.

The Salome keyword '->' corresponds to the keyword "goto" in Fortran.

In Fortran, labels must be numbers ( statement numbers ). Fortran labels
therefore have no mnemonic value. In Salome, however, label names may be
any isolated string containing no blanks. Salome labels may therefore be
given considerable mnemonic value.

The Salome goto statement contains the goto arrow followed by a label
name. The corresponding label statement or destination of the goto
consists of the label name enclosed in the special brackets: '<' and
'>>'. This convention makes labels stand out well and is used in the ADA
programming language. The label statement corresponds to the 'CONTINUE'
statement in Fortran.

The only keywords associated with goto and label statements are:
I->' V<<1 '>

EX.

<< DATA-INPUT-SECTION >>

-> DATA-INPUT-SECTION

-> END-OF-PROGRAM

> END-OF-PROGRAM >
END

14. Loops

Salome has a single looping statement with auxiliary loop escape
and loop continue statements.

A Salome loop starts with 'DO' and ends with 'OD'. Whatever code lies
between these two keywords is executed over and over again until some form
of loop escape is done.

The, sharp sign (#) is the basic symbol used to indicate loop escapes.
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To escape from 1,2,3 or 4 surrounding loops if Boolean expression B is
true, one writes:

# B #
or

## B ##
or

## B ##
or

#### B ####
Respectively

To escape from 1,2,3 or 4 surrounding loops unconditionally, one writes
the loop escape arrows:

-o>
or

0I>
or

---#>

or

---- >
Respectively

To escape from more than 4 levels of loop nesting, one must use a goto and
label.

While a loop escape statement breaks off execution of a loop completely, a
loop continue statement breaks off execution of a single pass or iteration
and then continues execution back at the beginning of the loop. The colon
(:) is the basic symbol used to indicate loop continuation.

In Fortran, when one 'GOES TO' the last statement in a 'DO' loop ( often a
'CONTINUE' statement ), one is doing loop continuation.

To continue 1,2,3 or 4 surrounding loops if Boolean expression B is true,
one writes:

or
:: B ::

or

::: B :::
or

:::: B ::::
Respectively

To continue 1,2,3 or 4 surrounding loops unconditionally, one writes the
loop continue arrows:

C:-

or
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or

or

Respectively

To continue beyond 4 levels of loop nesting, one must use a goto and

label.

The unconditional loop escape and loop continue statements allow the
programmer to perform some action just prior to escape or continuation.

The loop continuation constructs are seldom needed, but if they are
needed, one should be careful to increment any loop index at the beginning
of the loop in order to avoid an endless loop.

Ex.

- MULTIPLY M X N MATRIX A TIMES N X P MATRIX B TO
-- GIVE K X P MATRIX C

-- MAKE SOME EXPLICIT ASSUMPTIONS
@ tOO @ @ N>O @ @ P>O @

(-- IF THESE ASSUMPTIONS ARE NOT MADE EXPLICITLY AND ANY ONE OF THEM
TURNED OUT TO BE FALSE, NO ERROR WOULD OCCUR, BUT MATRIX C WOULD NOT BE
DEFINED AND NEITHER THE REST OF THE PROGRAM NOR THE PROGRAMMER WOULD BE
MADE IMMEDIATELY AWARE OF THIS SITUATION--)

1-0
DO 1=1+1 # DM # - INDEX ROW OF A

J=0

DO J-J+l # J>P # - INDEX COLUMN OF B
K=O C(I,J)-O.
DO K-K+i I ION # - INDEX SUMMAND OF ROW A/COL B

-- INNER PRODUCT
C(I, J)-C(I,J)+A(I,K)*B(K,J) '

OD OD OD - END OF MATRIX MULTIPLICATION

-- LET ARRAY A HAVE N ELEMENTS
- ADD UP THE POSITIVE ELEMENTS OF ARRAY A
I-0 S-0.
DO 1-1+1 # I>N # : A(I)<-O. : S-S+A(I) OD

-- ADD UP THE ELEMENTS OF ARRAY ", HAVING INDICES BETWEEN
-- OR INCLUDING NI ANI' N2

-- SGME EXPLICIT ASSUMPTIONS THAT h.,HT BE MADE ARE:

@ Ni <- N2 @ @ NI > 0@ @ N2 <- N @
I-NI-1 S0.
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DO I-I+1 # I > N2 # S-S+A(I) OD
(-- IF ONE DIDN'T MADE THE AFOREMENTIONED ASSUMPTIONS, ONE SHOULD BE
SOMEWHAT MORE CAREFUL IN SOLVING THE LAST PROBLEM -)

-- INITIALIZE LOOP INDEX AND ESCAPE CRITERION
IF NI<-N2 , I-NI-I IMAX-N2 ; I-N2-1 IMAX-NI F1
-- CHECK VALIDITY OF LOOP INDEX AND ESCAPE CRITERION
IF 1<0 , 1-0 Fl IF IMAX>N , IMAX-N F1
S-0. DO I-I+1 # I>IMAX # S-S+A(I) OD

(-- ONE CAN SEE HERE THAT ALTHOUGH THE GENERAL SOLUTION TO THE LAST
PROBLEM REQUIRED A LITTLE THOUGHT, THE PROGRAMMING WAS QUITE EASY -)

15. Debugging

Salome doesn't have any facility for debugging, but it does provide a
mechanism for ignoring or not ignoring certain sequences of executable
code at translation time.

One may prefix a '1% to a line of Salome code or one may surround multiple
lines of Salome code with the delimiters '(%' and 'Z)'.

Salome code which is so delimited may be ignored or not ignored at
translation time depending on whether the '%-Off' or '%-On' statements
have been invoked, respectively. The default is %-Off.

The advantage of this facility with regard to debugging follows.

In the process of debugging, the programmer will have to insert various
write statements etc. into his program in order to ascertain where the
program is going wrong. This is going to be especially true if the
programmer hasn't taken advantage of the explicit assumption or assertion
statement.

When a Fortran programmer thinks that he has all the bugs in his program
licked, he may either (1) remove the debug statements and hope that he
won't have to insert them again or (2) make a comment out of each and
every debug statement and hope that he won't have to change them all back
to executable code.

The Salome programmer may simply insert his debug statements with t
delimiting. During debugging, he may activate all or some of these debug
statements using the keywords '2-On' and '%-Off'. When a Salome
programmer thinks he has all the bugs in his program licked, he may simply
eliminate all '%-On' strings from his program and leave all the debug
statements in place for possible future use.
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SUSh IWTBp ( y X y XI yX ) -INTRPOLATION 
ROUTINE

%W ('ENTERING INTERP' )

@ N > I ASS=I4 TpAT TNERE ARE AT LEAST TWO POINTS fIN DATA

)X-"1 +1)-X( I)
(Z U DX a 0. ,w ( 'DX-0. IN IlTERP' )EXIT/

D)X < 0. w ( ' 0<0. IN INR ' ) EXIT 11 %)

@ DX > 0. @
3wm.Yf/DX

% W ( XXITING INTER?')
RET END
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A FINITE DIFFERENCE PROGRAM FOR COMPUTING THE THERMOELASTIC-

PLASTIC RESPONSE OF LINED GUN BARRELS

John D. Vasilakis
U.S. Army Armament Research and Development Command

Large Caliber Weapon Systems Laboratory
Benet Weapons Laboratory
Watervliet, NY 12189

ABSTRACT. A finite difference computer program for computing the
thermoelastic-plastic response of multilayered cylinders due to repeated
firing loads was discussed at the 27th Conference of Army Mathematicians. The
multilayered cylinder is a representation of a lined gun barrel. The program
can accommodate several layers and can compute the transient temperatures
and/or the stresses. It has been upgraded to include an initial program which
computes heat transfer coefficients, pressures and gas temperatures in the
firing cycle for input to the main program. The effect of contact resistance
between layers is now included. Results are shown for the behavior of a TZM
liner in a steel tube.

1. INTRODUCTION. This paper describes a finite difference computer

program for investigating the response of multilayered gun barrels subject to
some firing cycle. Results, typical of which the program is capable of
generating, are presented for a tube model which has a TZM liner and a steel
jacket. The application is to a large caliber weapon but the program can be
used for small caliber also. The program was written to coincide with a
development program which is examining the feasibility of fabricating and
firing multilayered gun tubes. One of the main factors limiting the life of
gun tubes is the excessive wear and erosion which occurs especially at the
forcing cone area of the gun tube. The experimental program, which has shown
success for 20 m weapons, is to insert liners fabricated from refractory
materials into the forcing cone area of the gun tube. Since refractory
materials have high melting points, there is a strong indication that they
will experience less wear and thus increase the life of the weapon.

Earlier versions of the computer program have been used to describe other
behavior (refs. 1-3). Preliminary work on the current problem was presented
in reference (3). That work has been improved by inputting the thermo-
physical properties as functions of temperature and by allowing contact resis-
tance between layers. The boundary conditions have also been Improved so they
are now generated for the current problem at hand, i.e., for specific config-
uration and bore material whereas previously they were empirically generated
for another system and simply used in the program as typical input.

The computer program consists of three parts which can be run as a single
program or as three separate stand alone programs. The first is an internal
ballistics program which generates the boundary conditions, i.e., heat
transfer coefficients, pressures, and gas temperatures as a function of time
for a single firing pulse, for input to the next two programs. The next
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program section computes the transient temperatures due to some firing cycle
and can be used to either show the thermal response of the system over several
firing cycles, indicating the temperature buildup and/or the temperatures can
be used as input to the third program section for the computation of stresses.
This can be done as the thermomechanical program is treated as uncoupled.

Results from each of the three sections using a TZM liner/steel jacket
configuration for a 105 mm large caliber weapon system are presented.

2. PROCEDURE. The equations used to describe the behavior are first
discussed in sebsection (a) and the numerical work in (b).

a. Theory. The partial differential equation for describing the
axisymmetric transient temperature distribution in multilayered cylinders is
given by, for layer L, aTL 3TL

- - (kL(T)r - ) - cL(T)pL(T) - (1)
r ar ar at

where r represents the radial distance, T the temperature, and t the time.
The thermal conductivity, specific heat, and density are given by k, c, and p
respectively. These properties are assumed to be functions of temperature.
Axial effects are ignored in the program. The geometry is shown in Figure 1.

The initial condition is given by

T(r,o) - To  (2)

where To would normally represent some ambient temperature. A temperature
other than ambient, say due to some environmental condition, could also be
used. The boundary conditions are of the type

k(T) - h(T-Tg) - -g (3)

where h is convection type heat transfer coefficient, g would represent some
heat input if it existed, and Tg is the temperature of the propellant gases
when the boundary condition is applied on the inside or bore diameter and the
ambient temperature when applied on the outside surface of the gun tube.

The thermo-physical properties are made dimensionless with respect to
their respective values for steel at the ambient temperature. The tempera-
tures are made dimensionless with respect to the maximum gas temperature
achieved during the interior ballistic cycle. The dimensionless time is
defined by

kot .... (4)
Poco b

2

where ko, p0o, and co are the values for steel as mentioned previously. In
the boundary conditions,
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hb h - -- (5)
k

becomes the Nusslet number.

Also required are continuity conditions between the concentric cylinders.
Normally one requires continuity of temperature and heat flux. However,
contact resistance does exist between surfaces and it was decided to include

this effect here. The resistance results from the true nature of surfaces
(ref. 4). Conduction occurs at the discrete points of contact between the
surfaces and is therefore a function of pressure, surface conditions, fluids
in the voids, etc. It is treated here as a thin layer resisting the flow of
heat. For the finite difference formulation, there is a Jump in temperature
at node i

TiL - TiL+l + &T (6)

while the heat flux

k iL - TiL 
TiL+l - Ti+IL+l

kL(T) _ t hCAT - kL+l(T) ------ (7)A Ar Ar

remains constant as one passes across the layer from cylinder L to cylinder
L+I. Equations (6) and (7) allow the computation of AT and TiL+l.

The use of finite difference equations to solve the thermo-elastic-
plastic stress problem requires expressing the equilibrium equation and the
equation of compatibility at each node at which the finite difference
equations are desired. The Prandlt-Reuss flow rule is used to eliminate the
incremental stresses so that what results is a matrix for evaluating the
incremental radial and tangential strains at each node. The required
equations follow, written in dimensionless form. The problem is treated as
plane strain.

The equation of equilibrium is written

aor Or-e --- + ... 0(8)
ar r

where
Or

Or(- -) is the dimensionless radial stress
00

08
0o (- -) is the dimensionless tangential stress

go

and oo is the yield stress in tension, and the compatibility equation

ace £c-r
--- + ..... W 0 (9)
Or r
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where
Ce

Ce(= E -) is dimensionless tangential strain
o

Cr
Cr(= E -) is dimensionless radial strain

0o

and Oo/B is yield strain in tension when E is Young's Modulus. The
compressibility of the material is expressed by

a
e-aT + - (10)3K

1
C - (Cr+e) is mean strain

3

a (ar+9+oz) is mean stress

K
K(- -) is dimensionless bulk modulus

0

a(- aTi) is dimensionless coefficient of thermal expansion

and
z - 0 for plane strain

Traction free boundary conditions are always used in the outside radius
and on the bore when only thermal stresses are required. When mechanical
loads are desired, the pressure pulse is applied to the bore.

It was desirable to write the finite difference equations in terms of
strain alone, hence, the stresses in the equations of equilibrium had to be
expressed in terms of the strains. This was accomplished by modifying a
plastic stress-strain matrix (ref. 5) which was derived by inverting the
Prandtl-Reuss equations. The inverted Prandtl-Reuss equation is

EcdT
(do} - [DP ] (d } e)(1 (11)

(1-2v)o o

where the stress vector is (do) - (dor, doe, doz}T, the strain vector (del =
{dcr, deg1 O)T, and (1) represents a unit vector. The plastic stress-strain
matrix [D ] us given by
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I-V Or 2

21

-,r SYMMETRIC

1-2v S

1 V Ors o 1t l-v oe, 2

(DP] - -- (12)
l+v 1-2v S 1-2v S

V Or' Iz' v O00 I-V Ozv 2

1-2v S 1-2v S 1-2v S

The primed stresses are deviatoric stresses,
1

oi' - 1a i - r,e,z (13)
3

At each node during a computation, the von Mises' yield criterion
11 Or-O8) 2 + (oe-or) 2 + (Oz-Or) 21 = 1 (14)2

is checked to see if plastic deformation has progressed to that node. If not,
the stresses remain elastic and can still be computed using Eq. (12) by
setting the deviatoric stresses equal to zero. The matrix [D"] then becomes
the same matrix as would exist if linear elastic behavior had been assumed.

The quantity S is given by
2 (2 H'a" ( (15)

where

3 3
0 - aiOiI'mij - o 2 Oe, 2 Oz2) (16)

2 2

is the equivalent stress and
do

I' = - (17)d Cp

is the slope of the equivalent stress/equivalent plastic strain curve and ts a
measure of hardening. The increment in equivalent plastic strain is given by

2

dep - - deijPd ijP (18)
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b. Boundary Conditions. The boundary conditions that are used as input
for the calculation of temperatures and of stresses are generated using a
computer program based on reference (6). In that paper, the burning of a
specific propellant for the purpose of firing a projectile from a gun tube is
modeled. The equations used are based on Corner's work (ref. 7) and represent
a first order interior ballistics solution. Lagrange's approximation is
assumed, i.e., the velocity of the gas at any instant increases linearly with
distance along the bore from zero at the breech to the full shot velocity at
the base of the projectile. Exponential decay is assumed during the blowdown
cycle, i.e., after the projectile has left the gun tube. Based upon the rate
equations and heat balances involved, the heat transfer coefficients, the
pressure pulse, and the gas temperature can be found as a function of time
during the firing cycle. The quantity of heat that goes into the heating of
the gun tube can be computed. The bore surface can be specified to be the
liner material. Figure 2 shows the output of this program for a gun tube with
steel at the bore surface.

c. Numerical Procedure. The Crank-Nicolson representation for finite
differences of the partial differential equation governing the temperatures in
time is (ref. 1)

[a+iAr)ki+I/2 ,n+1/2]Ti+l ,n+l + [-(a+iAr)ki+1/2,n+1/2

2Ar
2

-(a+(i-1) Ar)ki-1/2,n+1/2pi, n+l/2(---) (a+(i-1/2)Ar)Ti,n+
At

+ [(a+(i-1)Ar)ki-I/2.n+1/2ITi-!,n+I - [-(a+iAr)ki+1/2,n+1/2]Ti+l,n +

+ [(a+iAr)ki+1/2,n+l/ 2 + (a+(i-I)Ar)ki-1/2,n+1/2 -

2Ar
2

ci,n+1/2pi,n+1/2(---- )(a+(i-/2)Ar)]Ti,n + [-(a+(i-l)Ar)ki-1/2,n+i/2]Ti-l,n
At

(19)

The equation is solved twice:

1. At n+1/2 step, allowing k,p,c etc. to take on the values at t - n
step.

2. The new temperatures are then used to evaluate k,c,p at n+1/2 step and
the set of equations re-evaulated for the temperatures at the n+l step.

The computed temperature distributions at each full time step are saved on
disk and eventually called in when required by the stress program.

The finite difference equations are within any layer.
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Compatibility:

-rice i_ 1 + (2ri-ri-l) 6c - (ri-riI)Acr

-ri(ceil) - (ri-ri)(ce I- cei) (20)

Equilibrium:

-rihor - (ri-ri-I)Aoe + (2ri-r-I)Acr

-ri(ar Ori-l) - (ri-ri 1)(r i-e i) (21)

Substituting the Prandtl-Reuss equations into that of equilibrium

-riD(r,e)Acei I -riD(r,r)&cri-l +[-(ri-ri-l)D(8,e) + (2ri-rij)D(r,e) cae

+ I-(ri-ri_l)D(e,r) + (2ri-ri-l)D(r,r)]Acr

Eci
ri[°r Or I + (ri-ri-1)(ce -Or ) + ri [&Ti-&Ti-l] (22)

i-i- I I 1 1-2 vI i -1

Equations (20) and (21) are in backward difference equations. The actual
computations are preformed by averaging backward and forward difference
schemes. At the interface between cylinders, continuity of the radial stress
and radial displacement is specified and on the boundary, I - 1,

EctAT1

D(r,O)Ace + D(r,r)Acr p (23)

1 1-2v

where Apj represents a pressure increment at the bore or inside diameter. j
The solution procedure for the transient temperature problem is as 4

follows. The temperature problem is solved, and the temperature distributions
at their computation times are stored on disk. These distributions are called
into the thermo-elastic-plastic stress program one at a time. The
corresponding thermal stresses are calculated and each node checked to see if
the yield criterion is satisfied. If not, the problem is still assumed to be

elastic, a new temperature distribution is called in, and new stress increments
calculated. The stresses are updated, and the yield criterion checked again.
When the stresses at a point are found to satisfy the yield criterion the node
is identified, and the stress increments at that node from the next set of 4
temperatures are computed using the Prandtl-Reuss equation or [DP ] matrix
identified earlier. This procedure is continued with new sets of temperature
called in and with the tracking of the elastic-plastic boundary with time.

The mechanical properties are evaluated at the existing temperatures.
However, the yield stress has not yet been incorporated as a function of
temperature in the program.
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d. Mechanical and Thermophysical Properties. The properties used in the
calculations were found in reference (8). The nominal values are given in
Table 1. It is always one of the more difficult tasks to find properties as
functions of temperature. The steel properties used were those of 4340 and
4150. "Gun Steel" is typically 4340 or a modification thereof. The
thermo-physical properties for TZM used were those for those for molybdenum
itself since they were readily available as functions of temperature and the
same properties for TZM, only given at one or two specified temperatures tended
to fall on or near the same property for molybdenum.

TABLE 1. ROOM TEMPERATURE PROPERTIES

k cP a E Oyp V

BTU/#in°F BTU/#*F #/in 3  in/in°F Psi Psi

Steel 5.01x10- 4  .105 .289 6.2xi0- 6 30x10 6  160xlO 3  .3

TZM 1.87xl0- 4  .06 .369 3.0x10 6  45x10 6  130xi03 .314

3. RESULTS. The interior ballistic code was first run to set up the
input data (heat transfer for coefficients and gas temperatures during firing
cycle) for the position of the program which computes the transient temperature
distribution and pressure time curve for the mechanical load contribution to
the stress part of the program. Two data sets were established, one for steel
at the bore and one for TZM at the bore. Figure 2 showed the results for
steel. The interior ballistic code computes these results at several stations
along the tube, but only the section at which the maximum pressure was
generated was considered at this time. The temperature portion of the program
serves two separate purposes. The program can be run over several firing
pulses based on some specific firing cycle. This will show the buildup in
temperature during the firing. It can also be run to provide input data in the
form of temperature distributions throughout the wall of the tube for specific
times during the firing cycle. This data set is then used in the stress
program for the computation of thermal stresses or thermo-mechanical stresses
when the pressure-time curve is also applied. There were four types of
material problems considered, a single (monobloc) steel tube with constant
properties, a TZM liner/steel jacket with constant properties in each cylinder
and a TZM liner/steel jacket with temperature dependent properties. Results
from some of these cases are presented below.

Figure 3 shows the change of the bore temperature with time over four
firing cycles. The configuration is the TZM liner/steel jacket with
temperature dependent properties. The firing cycle depicted represents a
projectile being fired at the rate of four rounds per minute. The temperature
buildup at the bore can easily be seen. Figure 4 shows the temperature
response at the bore for a monobloc steel tube with temperature dependent
properties. This is shown on an expanded scale and represents the thermal
response used on one of the data sets for the stresses. When these data sets
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for stresses are established, a finer time increment is used over that which
simply computes the thermal response for temperature buildup. The finer time
increment decreases the temperature difference, AT, from time step to time step
which is used in the stress program. This helps in approaching yield tn the
stress program even though the temperature difference is further da. -ted near
yielding and after yielding has begun. When only the temperatures themselves
are desired, it was previously shown (ref. 3) that larger time increments can
be used. As the finite difference program for temperatures is implicit, the
time increment between pulses is increased at a rapid rate until the next
firing pulse comes along. It took approximately 90 time steps to complete the
temperature response to the four cycles.

When investtgating the effect of contact resistance, it becomes obvious
why many papers ignore it. The difficulty is not with the computation, but
rather the uncertainty of the physical constant to use in the evaluation. The
property h described earlier, is treated as a constant here but in reality
would be a function of pressure, temperature, the roughness of the surfaces in
contact, the hardness of the materials involved, etc. One would actually need
the true area of contact as opposed to the apparent area and how this changed
in time. Table 2 shows the effect of varying h on the bore temperature for
five firing pulses. The h is dimensionless. The table shows that when h
1000, the system is equivalent to having no resistance to heat flow and when
h - .00001, the effect is equivalent to zero heat flow at the interface. As
can be seen by converting some of the values from reference (4), one can get
coefficients which result in measurable effects. To better show the effect,
the resulting temperature distribution as a function of radius as shown in
Figure 5 for h - 1. The second, third, and fourth pulse are displaced from the
first for clarity of viewing. The bore temperature increases substantially

compared to zero contact resistance (as can also be seen from Table 2). The
temperature jump also increases substantially. The line indicating the jump
should be a vertical line from the point on the inner cylinder. The fact that
it is not is due to the plotting routine. A final remark on this section would
be that with the uncertainty in computing or experimentally determining an
actual h for a system, Table 2 shows little difference between an h - 1000 and
h - 100 as a threshold for zero contact resistance and again little difference
between h - .1 and h - .00001 for an insulating barrier.

TABLE 2. EFFECT OF 1 ON BORE TEMPERATURE

1000 100 1 .1 .00001

Pulse 1 0 0 0 0 0

Pulse 2 .00352 .00356 .00837 .00999 .01021

Temp Pulse 3 .00580 .00582 .01493 .01952 .02020'

Pulse 4 .00758 .00756 .02013 .02861 .02998

Pulse 5 .00904 .00901 .02424 .03728 .03596
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The remaining results relate to the output from the stress portion of the
program. Figure 6 shows the effect of including temperature dependence of

material properties in the analysis. The variation of radial stress and
tangential stress across the wall thickness are shown. There is little effect
except ut the peak tangential stress at the bore which is about three to four
percent hie.,er for a tube with temperature dependent material properties. This
r.-iresents a stress difference of about 5000 psi.

The stress results being shown ire only the response to the first firing
pulse. Hence, the stresses are mainly due to a steep thermal gradient at the
bore of the tube. If inelastic response does not occur, the stress response
would not change significantly from pulse to pulse as the mechanical load
vanishes and there remains only a slight thermal gradient throughout the tube
wall. Depending on the configuration of the system, the firing rate, etc.,
the rise in bore temperature before the next round is fired is mall, - 3*F to
90F.

Figure 7 shows the variation in tangential stress versus radius for the
multi-cylinder configuration, TZM/steel, with the temperature dependent
properties at the time when the internal pressure peaks. The mechanical
loading due to the pressure-time curve alone is shown as is the thermal stress
distribution due to the temperature distribution. The combined effects are
also shown. These combined effects are not arrived at by adding the separate
ones but are recomputed. This is important, especially in the case shown,
because the mechanical load alone was sufficient to cause the inelastic
deformation at the bore. While this inelastic zone was concentrated at the
bore and there was little depth of plastic zone penetration into the wall, it
is still incorrect to linearly superimpose solutions by adding the separate
stress distributions. Under the combined loads, the solution remained elastic
throughout. Figure 8 shows the results from the same problem at the time when
the thermal stresses peak.

4. SUMMARY. The computer program described is capable of predicting the
therma -response and the thermo-elastic-plastic response of liner/jacket gun
tube designs with temperature dependent thermo-physical properties. Realistic
input to this problem is generated using an interior ballistics code. While

only a two cylinder system is described, allowance is made for up to five
cylinders.

Improvements can always be made and in this case, the following could be
included. By using a variable space increment in the thermal program, the
effect of a deposited thin layer on the bore surface can be investigated.
Initial stresses due to interference should be incorporated as should a
temperature dependent yield stress.

ACKNOWLEDGEMENT. The author would like to thank Pat Vottis for allowing
the use of his program to generate proper boundary conditions.
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ACCURATE COMPUTER ARITHMETIC FOR SCIENTIFIC COMPUTATION

L. B. Ral-
Mathematics Research Center

University of Wisconsin-Madison

ABSTRACT. A basic requirement of scientific and engineering computing should
be that the numerical results are obtained as accurately as possible. On existing
computers, however, it is well-known that arithmetic operations are not always per-
formed to this standard. For example, the UNIVAC 1100 series execute most single

-27
precision floating-point operations with a relative error of 2 ; however, one gets

134217728.0 - 134217727.0 = 2.0,

a result which is in error by 100%, even though the arguments are exactly repre-
sentable. Similar errors are made by other machines in their floating-point opera-
tions. This situation can be avoided, and high accuracy obtained in final results,
if computer arithmetic is done according to the general theory developed over the
last ten years by U. Kulisch (working at MRC, IBM, and the University of Karlsruhe)
and his coworkers. This accurate (or controlled) arithmetic is based on the ordi-
nary operations +, -, ., / augmented by V (downward rounding), A (upward rounding),
o (antisymmetric rounding), and, for accurate numerical linear algebra, a scalar
product * of maximum precision. The operations of accurate arithmetic can be im-
plemented easily on a microcomputer or a computer with microprogrammable arithmetic
operations. In addition, for accurate final results, a compiler is necessary which
will select the appropriate operations. A language of this type (PASCAL-SC) has
been developed in Germany. Along with accurate real arithmetic, this compiler pro-
vides accurate complex arithmetic, real and complex interval arithmetic, and vector
and matrix arithmetic over these data types. Some features of PASCAL-SC related to
scientific and engineering computation will be described. In most cases, the opera-
tions of accurate arithmetic are performed at the same speed as ordinary (uncontrol-
led) floating-point arithmetic.

1. IMPORTANCE OF ACCURACY. Scientific computation, in contrast to other
applications of electronic digital computers, requires the performance of large
numbers of arithmetic operations in most cases. Although computers were original-
ly brought forth to do "number crunching" on scientific and engineering problems,
this area has faded in importance, so that most computers today are used to manip-
ulate data files most of the time, with only the most elementary arithmetic being
done, such as for payrolls and other accounting purposes. The evolution of compu-
ters has followed, by and large, adaptation to tasks for which the sales of machines
are the greatest. In particular, accuracy has been a minor consideration in the
design of arithmetic units, and present-day machines show no improvement in this
area, or even a deficiency as compared to earlier machines. The example given in
the Abstract is not at all isolated; similar defects can be found in other models
of machines in wide use today. While such "glitches" are extremely rare, and can
be detected by programs which have enough internal checking of consistency of re-
sults, it is probably only a matter of time until some disaster is tr-iceable to an
error in computer arithmetic inherent in the design of the machine. In addition to
the scientific and engineering computing community, it would appear that insurance

Research sponsored by the U. S. Army under Contract No. DAAG29-80-C-0041.
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companies, as well as the public in general, should be interested in improvement
of the accuracy with which computers perform the basic arithmetic operations.

The type of inaccuracy considered here is not the inevitable error in using
one of'the two floating-point neighbors of a real number to represent it; this
error is usually very small. What is under discussion is the unnece46zAy 6a.tuAe
of a computer to produce such a neighboring number as the result of an arithmetic
operation, and the lack of controllability of the rounding of results to the de-
sired neighbor (closest, greater, or lesser). The inaccurate, uncontrolled float-
ing point arithmetic one finds at present has a harmful effect on the reliability
of computed results, and it should be replaced by accurate, controlled arithmetic.

The question of increase of accuracy in computer arithmetic is more subtle
than may appear at first sight. For example, the arithmetic unit of the UNIVAC
1100 could have been designed in such a way that errors of the type cited would
not occur [29], 131], and the resulting change in price of the machine would have
been negligible. It would seem then that if users set standards for arithmetic
accuracy, then the manufacturers could respond by supplying the desired product
without much disruption of the overall architecture of the machine, whether or not
number crunching is viewed as its primary purpose. However, the following ques-
tions arise:

10. What are explicit standards for arithmetic accuracy?

20. How does one build an arithmetic unit to implement such standards?

There is even a further question which must-be addressed in scientific and
engineering computation:

30. How can one develop software to take advantage of accurate arithmetic
to produee results which are as accurate as possible, and give a reliable indica-
tion of their accuracy?

This last question is of particular importance at the present time, since
most people use software developed by others, which is written in higher-level
languages ani Lun on a variety of computers with different basic accuracies. The
overall problem of accuracy, therefore, involves both hardware and software, and
may appear to be intractable in general. However, a fundamental theory of compu-
ter arithmetic has recently been developed by U. Kulisch (9], (10], [11], (12],
and his coworkers, and is described in detail in the book by Kulisch and Micanker
(131. This theory provides a guide to the construction of accurate hardware and
software, and the latter has been implemented for a microcomputer [14]. A brief
and incomplete discussion of these developments will be given below; the book (13]
should be consulted for a fuller treatment. The main point is that it is possible
to answer the questions posed above on the basis of a rigorous mathematical theory
instead of ad hoc reasoning applied to special cases.

Unfortunately, there is an attitude of satisfaction with the statuA quo among
certain members of the scientific and engineering computing community. Since compu-

tations cannot be performed exactly in general, a tolerance of unnecessary errors
in arithmetic has developed. One hears comments such as, "My data aren't very good
anyway, and I only need a couple of decimal places in the results." An answer to
this is the calculation cited above, in which the data are exact, but the result
does not contain any accurate digits. Another widely circulated idea is that higher
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precision is a solution to the accuracy problem. One can compare the number of
digits to which single and double precision computations agree, for example.
(People who advocate this idea seldom carry it out: They simply use the highest
precision available at low cost.) It is true that the number of accurate digits
are usually increased by going to higher precision, but usually at the cost of an
even greater increase in the (unknown) number of inaccurate digits. Poorly de-
signed arithmetic units will also make mistakes in double or higher precision,
thus obviating this approach. It is the position of this paper that confidence
in the result of numerical computations should be based on reason, not faith.
Furthermore, manufacturers should be required to deliver machines capable of ac-
curate computer arithmetic in the sense defined below.

2. ERROR ANALYSIS. Recognition and analysis of the roundoff error inherent
in actual computation predates the computer era. Since only a few actual calcula-
tions could be performed by hand or mechanically, what is called 6ountd analysis
[8], in which the propagation of the errors generated at each step was followed
into the result, was more or less feasible. The introduction of electronic machines,
in which the number of operations progressed from hundreds to thousands to millions,
lead.to a recognition of the inadequacy of forward error analysis, and the develop-
ment of other methods of error estimation and control. A bibliography published
in 1965 [22] already contained 903 entries relating to the subject. By the time
conferences were held on error in digital computation at the Mathematics Research
Center in 1964-65 [23], [24], the basic ideas of bacfuwad error analysis [1],
zigniicance arithmetic [3], and inte.va2 arithmetic [15], [16], had already been
introduced. However, the inaccurate, erratic arithmetic performed by the floating-
point units of most available computers plays havoc with the anaLy~L5 of the error
of results, as well as with the accuracy of the results themselves.

Backward error analysis, due to J. H. Wilkinson (27], regards the solution
obtained by the computer to be the exact solution of a perturbed version of the
original problem, and an estimate of the size of the perturbation is made. The
basic formulas [1] are:

(2.1) fl(xoy) = (xoy)(l + E), o E

In (2.1), fl(xoy) denotes the floating-point number actually computed for the
exact result xoy, and E is a machine-dependent number which is a function of the
base in which floating-point numbers are represented, the number of digits in
their mantissas, and the way in which rounding is done. According to the example
given in the Abstract, one has to take IcH = 1 for the UNIVAC 1100, instead of

-27
IEl = 2 on the basis of the base b = 2 and the number of mantissa digits n =

27. The error bounds one gets in this case are rigorous, but too large to be
useful. The fault does not lie with the theory, but the way the arithmetic unit
of this particular machine works. Of course, (2.1) can be used to formulate a
6andoAd: It is to hold for all defined floating-point operations with Ifd !5

b-n over the entire set of floating-point numbers x,y available on the machine.
This criterion, as simple as it is, is not met by many machines on the present
market.

Significance arithmetic attempts to model the degradation of accuracy in
a calculation by reduction of the number of digits carried as significant. In-
terval arithmetic, on the other hand, traps the true result of the calculation
between two machine numbers, and thus leads to guaranteed lower and upper bounds
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for the exact answer. These types of arithmetic carry with them certain aspects
of forward analysis. They are, however, useful in connection with the accurate
arithmetic to be described below, and interval arithmetic has many other applica-
tions (17]. Interval arithmetic for real and complex numbers, vectors, and matrices
is included in the theory of computer arithmetic given by Kulisch and Miranker
[13], and has been implemented as standard in the language PASCAL-SC [28], about
which more will be said later.

The above considerations are concerned mostly with comptatjonal error, which
is produced by the arithmetic unit of the computer, sometimes in a way unknown to
the user. This type of error is extremely invidious, like an undetected cancer
eating away at the guts of the computation. A more superficial type of error is
conueK64on error, which enters into consideration if b # 10. As in the case of
rounding, methods for accurate base conversion are well-understood [30], and it
is not too much to require that the machine and the associated input/output soft-
ware perform conversion as accurately as possible. Once again, this is a standard
that is not always met. For example, the following program in standard PASCAL
was used to test conversion on a couple of machines.

program rw(input, output);

var x: real;

begin while not eof do
(2.2) begin readln(x); writeln(x)

end;

end.

The results using a VAX 11/780 at the University of Wisconsin-Madison were:

Input Output

1.1 1.100000024E+00

2.1 2.099999905E+00
(2.3) 3.1 3.099999905E+00

1.2 1.200000048E+00

2.2 2.200000048E+00

Incorrect digits are underlined. Thus, the number of correct digits produced
varies between seven and eight out of the ten printed, according to a pattern
that may not be immediately apparent. An analysis of the representation of
single precision floating-point numbers on the VAX reveals that ten-digit deci-
mal numbers cannot be represented exactly in general. Thus, some of the digits
of the ten printed will be fabrications in most cases, which might deceive the
uninitiated.

The same program (2.2) was also run on the UNIVAC 1100 system at the Univer-
sity of Wisconsin-Madison, with results which are given in (2.4). Here, fewer
digits are printed, but they are all accurate. This is more in the spirit of
accurate (and significance) arithmetic. Accuracy is obtained here at the price
of sacrifice of two or three additional accurate digits which could have been
printed. Thus, inaccurate information is presented in (2.3), and accurate digits
are coyly concealed in (2.4). The ideal situation, of course, is for the input/
output software to convert as accurately as possible, and if desired, print all

346



accurate digits of the output, and only those.

Input Output

1.1 1.1000E+00

2.1 2.1000E+00

3.1 3.1000E+00

1.2 1.2000E+00

2.2 2.2000E+00

There is one remedy for conversion error which has been around for a long
time, namely, decima arithmetic. (One recalls older machines such as the IBM
650 and the Burroughs 205.) Decimal arithmetic has also been implemented in the
microcomputer version of PASCAL-SC [14], [281: The standard format chosen for
floating-point numbers is twet'e decimal digits for the mantissas, with two deci-
mal digit exponents. The digits in the mantissas are packed as two BCD characters
per eight-bit word. In this era of large-scale integration of computer circuits,
hardware to handle longer strings of deci- I digits should be simple to produce.
(On the microcomputer, this is done princ sally by software.)

Even if the above discussion is unconvincing with regard for the need to
keep arithmetic computation and conversion error to a minimum, consider the fol-
lowing situation: Two computations, each costing the same, are made of some
quantities of interest. Suppose that it is known than one computation is performed
with more accurate arithmetic than the other. Which is preferable, considering
that the results may be used to make decisions on which the safety of life and prop- .j
erty depend? This is the main point here: Now that the implementation of accurate
arithmetic is known to be relatively simple, why not insist upon it?

3. FLOATING-POINT ARITHMETIC. Here, the discussion will be intuitive, using
concepts familiar to most users of digital computers. For precise definitions and
a rigorously structured argument, see the book by Kulisch and Miranker [131. The
ingredients needed are the set of floating-point numbers, the arithmetic operations,
and various roundings. The set of floating-point numbers available on most machines
constitutes what will be called a AcAeen S; it is linearly ordered, and contains the
identity elements of addition (0) and multiplication (1). S is a subset of the real
numbers which contains -a if a E S, and a maximum element s = max{a I a e S) (and
hence the minimum element -s). There are, of course, only a finite number #S of
elements of S. Excluding division by zero, the basic axZthmeti op taon.6 +, -,

/ can be applied to pairs of elements of S to obtain a larger, but still finite,
set of real numbers AS consisting of the results. Elements x E AS such that lxi >
s will be said to have oveAtoWed S; in actual practice, the attempt to form such
results will lead to an error indication. The remaining elements y E AS such that
Jyj ! s will not, in general, be elements of S; before computation can proceed, a
mapping y - a, a C S is required. More generally, we want to consider a class of
mappings from the real numbers contained in the interval [-s,s] into S; such mappings
are known as )0owding96.

There are three types of roundings of basic importance for accurate computer
arithmetic [13]: There is upmd rounding A, defined by

(3.1) Ar = min(a a 4 r, a 6 S}, r E [-s,s],
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and dow u&td rounding V, for which

(3.2) Vr = max{a I a - r, a E S}, r E [-s,s],

just as you expected. These are the monotone roundings. Another type of rounding,
called antcm mneAic rounding, is denoted by 1; here Or E S and

(3.3) Q(-r) = -(1).

Antisymmetric rounding is probably best illustrated by examples. One way to de-
fine Or is as the Cto0e6t element a of S to r, with a tie-breaking rule satisfy-
ing (3.3) if r is equidistant from two elements of S. Thus, if S consists of in-
tegers, then r = 1.6 would be rounded to a = 2, and r = -1.6 to a = -2, thus sat-
isfying (3.3). This type of rounding has the least possible absolute error, and
Yohe [29) calls Or in this case the Best Possible Answer (BPA). There are other
antisymmetric roundings, however. Simple tAuncation rounds r = 1.6 to a = 1 (down-
ward), and r = -1.6 to a = -1 (upward), and (3.3) thus also holds in this case,
sometimes called rounding towawd zeAo. Rounding aauy ftom zeAo (0(1.6) = 2,
[(-1.6) = -2) is also an antisymmetric rounding, but is less frequently encountered
than truncation.

Rounded computer arithmetic, then, consists of arithmetic operations followed
by rounding. For accuracy, the antisymmetric rounding of choice is the BPA round-
ing of the result of the operation to the closest floating-point number. In order
to implement this rounding correctly [13], (29] for n-digit mantissas, the accumu-
lator has to be extended to n + 2 digits, preceded and followed by one binary
digit (bit). The detailed algorithms can be found in [13]. It is also extremely
helpful to have a Long accumulator of 2n + 1 digits preceded by a bit. The extra
expense of providing these accumulators, compared to the usual double-length ac-
cumulator for floating-point arithmetic, should be a negligible component of over-
all computer cost. In addition, the short and long accumulators described also
permit the monotone roundings (3.1) and (3.2). Actually, only one monotone round-
ing need be implemented, the other can be obtained from it by Fign changes: A(a)
= -V(-a) [13]. However implemented, both monotone roundings are needed for inter-
val arithmetic [13], [17], which is an essential component of accurate computa-
tion.

A m&tnmum standard for floating-point arithmetic, not met by present commer-
cial units in general, is

(3.4) A A aB = [(aob), (aob) E [-s,s],
oE{+,-,•,/} a,bES

where D denotes the BPA rounding to the nearest floating-point number, aob is the
exact %eat teAu of the operation o, and ag, is the computed result actually
obtained. In words, (3.4) says that the floating-point number produced by the
rounded floating-point arithmetic operation is the closest floating-point number
to the exact real result, if defined. Addition of the monotone roundings to
(3.4) results in the following STANDARD FOR FLOATING-POINT ARITHMETIC:

A A A
(3.5) aab = O(aob), (aob) E [-s,s].

{l-0,v,A} oE{+,-,.,/} a,bES
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Again, aOb denotes the floating-point number produced by the computer, and aob
the exact real result of performing the arithmetic operation o with the floating-
point arguments a and b. Furthermore, the user should be able to select the par-
ticular rounding desired. This leads to twelve floating-point arithmetic opera-
tions followed by the corresponding rounding:

+ , - , , / , Best possible answer (BPA) rounding;

(3.6) +>, -> />, Upward (A) rounding;

+<t -<, .<, /<, Downward (V) rounding.

All of these correctly rounded arithmetic operations are standard in PASCAL-
SC. The user simply employs the notation on the left side of (3.6) (with - replaced
by *, as usual; in this paper, * is reserved for another purpose, namely, the scalar

product of vectors).

4. HARDWARE vs. SOFTWARE IMPLEMENTATION. Generally speaking, operations
which are not proviid by the hardware of a computer can be obtained by program-
ming. In general, .hen, the efficiency of a computation depends on the ratio of
hardware to software operations. A p/kimZ ve computer will be defined to be one
in which only (accurate) integer arithmetic is available in hardware. Most of the

8-bit and 16-bit microcomputers fall into this category, as well as some 32-bit
processors. On primitive machines, all floating-point arithmetic has to be done
by software; thus, accurate operations (3.6) can be performed in essentially the
same time as the usual inaccurate ones with uncontrolled rounding. The details
of implementation of accurate floating-point arithmetic on primitive computers
are given in (13], Chapter 6. There is no reason not to use the algorithms in
this source, even if only BPA rounding is desired.

Machines with built-in floating-point hardware are found in the minicomputer,
standard, and supercomputer ranges. The arithmetic units of these machines will
be said to be m6d for efficient scientific computation unless (3.5) is satis-
fied. On this basis, almost all available floating-point arithmetic units are
junk. The operations in (3.6) which are not provided by the hardware (this often
means W of them) must be implemented by resort to primitive operations, with a
dreadful loss in efficiency. This is well-documented in the case of implementation
of interval arithmetic on a number of standard computers (2], [7], [21], [26].
These studies show factors of 50 to 300 in time between wired-in and programmed
operations. On a primitive computer (the DEC 10), th ratio between ordinary
floating-point arithmetic and interval arithmetic was observed to be 2, which is
to be expected, since the calculation of an interval requires computation of its
two real endpoints.

One bright note is now the most modern computers have or allow facilities
for microprogramming of operations. Thus, it is possible in many cases to obtain
the operations in (3.6) with little or no increase in execution time. In fact,
Moore [18] reports a ration of 1.8 of microprogrammed interval arithmetic to real
arithmetic on the PDP 11/40E, a very ordinary minicomputer. Here, the ratio is
less than 2 because of capabilities of the machine for overlapping successive
operations.

To summarize, accurate floating-point arithmetic on microcomputers or micro-
programmable computers is at present competitive with the uncontrolled, inaccurate
kind. If appropriate standards are set by purchasers, then this should lead to
machines which are offered with built-in floating-point arithmetic units which
are specifically designed for accuracy and implement (3.6) in hardware. Both
short and long accumulators should be available.
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5. STANDARD FUNCTIONS. In addition to arithmetic, scientific computation
of course requires a library of a number of standard functions, and the specifi-
cations for accuracy and rounding have to be consistent with those for floating-
point arithmetic. If f is such a standard function with domain D(f) C S fR, then
the basic requirement is

(5.1) / /'\7 (a) = of(x),
OE{[],V,A} aED (f)

where 0(a) is the result actually computed, and f(a) is the exact real num-

ber defined by the transformation f applied to a. Equation (5.1) embodies the
goal of accurate scientific computation: Obtain as the result a floating-point
number which is closest to the exact result, or the closest larger or smaller
element of S to f(a), as desired. Most software for scientific computation pro-
vides a number of standard functions (square root, sine, cosine, exponential,
logarithmic, and so on) which appear frequently in scientific formulas, although
not necessarily with the accuracy prescribed by (5.1). Once again, since the
methods for accurate computation of standard functions are well understood, (5.1)
should be adopted as a 6tandard requirement for accuracy of functions provided
by compilers.

One way to meet the requirement (5.1) in a given precision is to calculate
the BPA for f(a) in higher (not necessarily double) precision, and then perf-:rm
the appropriate rounding to the shorter length. This is the strategy adopted in
the PASCAL-SC compiler [28], in which a longer real number with 20 decimal digit
mantissa is provided in addition to the standard 12 digit format. Thus, it is
also possible to add functions for special computational purposes which also meet
the requirement of accuracy (5.1), providing careful error analysis and program-
ming is done.

6. VECTOR AND MATRIX CALCULATIONS. In the area of calculations with vec-
tors and matrices, the theory of computer arithmetic given by Kulisch and Miranker
[13] provides a significant advance in accuracy over previous methods. The key
to this improvement is the accurate computation of scalar products of vectors,
the importance of which was recognized early by Wilkinson (1], (27]. Instead
of arising from ad hoc considerations, however, the necessity of this accurate
scalar product arises from the simple (but deep) concept of a Aemumotphizm,
defined in [13]. The idea, loosely described, is to represent the algebra of
the entities entering into the calculation as accurately as possible by floating-
point numbers. In particular, if A is an algebraic system in which the operation
o is defined, one requires that

(6.1) A ab = O(aob),
a,bEA

where 0 is an antisymmetric rounding which preserves the (partial) ordering re-
lation in A. It follows that floating-point arithmetic satisfying (3.1) consti-
tutes an example of (6.1) in which A = R, the set of real numbers. Such computer
arithmetic is called AemimorphLWm-induced arithmetic.

For A - VR, the set of vectors of some given finite dimension over the reals,
the operations of addition and subtraction are readily seen to satisfy (6.1) if
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done componentwise by arithmetic for which (3.4) holds. Similarly, multiplication
of vectors by real numbers can be achieved semimorphically by accurate arithmetic
done componentwise. Going on to A = MR, the matrices over the real numbers, there
is once again no problem with addition, subtraction, or multiplication by real
numbers. Vector-matrix, matrix-matrix, or matrix-vector products, however, re-
quire calculation of the Acat G ptoduec

m
(6.2) a*b = Z ai-b.

i=l11

of two m-dimensional vectors a,b E VR . Simply evaluating the right-hand side

of (6.2) in accurate single precision floating-point arithmetic does not achieve
(6.1) with - = * in general. Calculation of the sum of products in (6.2) in
double precision, as recommended by Wilkinson [1], [27], results in a significant
improvement in accuracy, but also fails to achieve a semimorphism in general.
What is needed for best results is a way to add the m 2n-digit double precision
products a. .b. without loss of accuracy. This is provided by algorithms due to

1 1

Bohlender (5], [26], described in [13]. The resulting semimorphic scalar product
is implemented in PASCAL-SC.

There are a number of dramatic illustrations of the accuracy with which tasks
of linear algebra can be performed using accurate scalar products. For example,

the segment of order 15, Hi5  ((i + j - 1)- ), i,j - 1,2,...,15, of the notorious

Hilbert matrix can be inverted on a microcomputer with the result guaranteed to be
accurate to 11 of the 12 decimal digits of the mantissas. This is in spite of the

52.5 23fact that the condition number of the matrix is P(H1 5) a e * 10 ,so that, by

rule of thumb, a roundoff error of 10-12 should correspond to a to6u of 11 signifi-
cant digits, rather than the observed uncertainty of one. (See [1] for an error
analysis of matrix inversion based on condition number; a table of test matrices
with their condition numbers is given in [19], for example.)

The accuracy cited above is obtained by what is called hoizon/o. extenzn
of matrix arithmetic into the floating-point number screen. This concept is il-lustrated by the appropriate segment of the Ku ch diagam ([13], .. 2):

I II III IV V

1 R D s +-./
x

2 VR D VD D VS +
X

3 MR D MDDMS +

Figure 6.1. A segment of the Kulisch diagram.

Interpretation of this diagram can be made on the basis that D is the set
of double precision floating-point nubibers, and s is 'he screen of single precision
floating-point numbers; VD, VS are the corresponding -ctors, and MD, MS matrices
over D,S. In each row, the defined arithmetic operations are given in column
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V. The x between rows indicates that multiplications are defined: Vectors and
matrices can be multiplied by numbers, and matrices can be multiplied by vectors.
It is assumed, of course, that the appropriate dimensions obtain.

The matrix multiplication based on (6.2) satisfies (6.1); it is the direct
realization of multiplication in MR in MS. The product built up from evaluation
of (6.2) using operations in D or S, shown in column V, results in
(6.3) (a,b) = al1 1 a2 }b2 9 ... 9 a ]b

where the rounding 0 has been indicated for the operations in D or S. This pro-
duct, often very different in value from a*b, is the result of moving downward in
the Kulisch diagram, hence, it is said to be obtained by vye tca exten6ion. The
product (6.3) is the one calculated by ordinary matrix/vector software, and leads
to the inaccurate results customarily obtained, particularly for poorly conditioned
problems.

The basic idea above also comes up in connection with standard functions,
and can be stated loosely as follows: One must distinguish between the evaluation
of a 6ormu ua for a function by floating-point arithmetic (accurate or not), and
the evaluation of the junCion as a floating-point number adjacent to its exact
real value. In the latter case, implementation of the operations involved have
to be done accurately in order to satisfy the standards (5.1) and (6.1). This
can require detailed analysis; the software used and the hardware should assist
in attaining the desired goal. Accurate floating-point arithmetic and the features
of PASCAL-SC constitute significant advances in this direction.

7. COMPLEX ARITHMETIC. Since complex numbers, vectors, and matrices arise
in many scientific computations, accurate arithmetic for these data types is also
required. Thus, arithmetic for these types is included in the general theory 3],
and implemented in PASCAL-SC according to the standards (3.5) for arithm~tic 1)
for standard functions [28], and (6.1) for the scalar product (6.2).

8. INTERVAL ARITHMETIC AND INCLUSION ALGORITHMS Interval analysis [17] has
applications to many important problems, and is based ultimately on interval arith-
metic and interval versions of standard functions. In many cases, intervals can
be used to represent guaranteed lower and upper bounds for exact results in scien-
tific calculations, and also to guarantee the exi6tence cf solutions to problems
within those bounds. In order to have computed results in which one can have this
kind of confidence, monotone rounding has to be made to S, so that lower endpoints
will be rounded downward, and upper endpoints upward. As noted above, the simple
provision of the roundings t,V in hardware is really all that is basically re-
quired for the efficient implementation of interval arithmetic. Even better, the
arithmetic unit could be built for direct execution of int- val arithmetic.

Interval algorithms which give guaranteed lower and um r bounds for the
results of exact real computations will be called inctuaion algorithms. Such
algorithms are known for a wide variety of computational tasks: Solutions of
linear and nonlinear systems of equations, inverses of matrices, solutions of
ordinary differential and integral equations, and so forth. If the results of
an inclusion algorithm are intervals in which the lower and upper endpoints agree
to a certain number of places, then the real result is determined to that accuracy.
This is used in PASCAL-SC as a significance criterion when inclusion algorithms
are employed; only significant digits are printed, so the guaranteed accuracy of
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the result is apparent at a glance. Thus, one obtains not only a result, but at
the same time the accuracy of the result. This is in stark contrast to what hap-
pens in ordinary computation, in which a fixed number of digits are printed in
each answer, and one can be completely in the dark as to how many (if any) are
accurate.

In many cases, an efficient use of inclusion algorithms can be made by first
computing an approximate real result, using accurate arithmetic, and then using
this result to construct a small interval to test for inclusion of the exact an-

swer. For an example connected with the use of Newton's method for the solution of
nonlinear systems of equations, see (25]. This po6tappication of interval tech-
nique often gives guaranteed existence and error bounds with little additional
computation time, as opposed to doing the entire calculation in interval arith-
metic. Of course, as advances in hardware result in higher speed for interval
arithmetic, this point may not be as important as the possibility, in some cases,
that smaller intervals can be obtained by postapplication.

In addition to arithmetic for real intervals, interval vectors, and interval
matrices, inclusion algorithms for zeros of polynomials, eigenvalues and eigen-
vectors, and solutions of nonlinear systems of equations require the corresponding
complex arithmetics, since the numbers which will arise in scientific computation
involving these problems will be complex in general. Thus, a further requirement
for accurate computation is that the hardware and software provide facilities for
six additional data types:

(1) real intervals; (1c) complex intervals;

(2) real interval vectors; (2c) complex interval vectors;

(3) real interval matrices; (3c) complex interval matrices;

all with Aemimorpm accuAacy.

Including the real and complex numbers, vectors, and matrices, there are
thus twelve floating-point data types which should be considered to be standard.

(Of course, integer arithmetic is also essential.) All these types are standard
in PASCAL-SC, and appear in the complete Kulisch diagram ([13], p. 2), [28]. It
would be ideal if the computer hardware were designed according to the general
theory of compu'ter arithmetic given in [13], together with the algorithms for
its implementation also provided there.

9. A PROGRAMMING LANGUAGE FOR ACCURATE SCIENTIFIC COMPUTATION. Given the
operations for accurate floating-point arithmetic with controlled rounding, there
remains the problem of software which will enable the user to take advantage of
the available accuracy, and the formation of a library of programs of known and
guaranteed accuracy to take care of computational tasks frequently encountered.
It is possible, of course, to modify an unstructured programming language such as
FORTRAN [6] in this way, and the result would undoubtedly be an improvement over
what one finds at present. Structured languages, such as PASCAL, however, offer
more opportunities because of the ease in which new data types can be introduced.

To bring in complex numbers, for example, the declaration

(9.1) type complex record re,im of real end;

F,
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does the job in PASCAL. If one is doing a lot of calculations with real poly-
nomials of degree up to some value, then one could declare

(9.2) const deg = ; (whatever the chosen value)

type degree = 0..deg;

polynomial = array [degree] of real;

and so on. However, operations between members of new .data types have to be done
by functions and procedures, as usual. PASCAL-SC (14], however, allows the user
to introduce opmatoU6: The arithmetic symbols +, -, -, /, if appropriate, can
be defined for new data types by the user; for example, for fractions, polynomials,

and so forth. In addition, operators (unary or binary) can be given names and
priorities, and used in expressions for the appropriate data type. Thus, addition
of complex numbers is written simply

(9.3) c := a + b;

once + is defined for complex numbers by an operator subroutine, standard in
PASCAL-SC; (9.3) also applies to intervals, vectors, matrices, polynomials, etc.,
under the same condition. This simplifies programming considerably in a number
of cases. Furthermore, the user has the opportunity of achieving semimorphism
accuracy in certain instances. For example, in the multiplication of polynomials

m m
p(x) = p0 + Pl x + .. + Pmx and q(x) = q0 + q1x 

+ 
... + qmx , one could write

(9.4) r := p-q;

in the definition of • for polynomials, one would note that the coefficients

k
(9.5) rk = . qi k = 0,1,... ,m+n,

i=0

m+n
of the product polynomial r(x) r0 + r x + ... + r m+n x are essentially scalar

products, and thus can be computed accurately as described in §6.

Thus, the r~le of software in accurate scientific computation is twofold:
It must allow the user to take advantage of whatever accuracy is provided by the

hardware, and to achieve accuracy in operations which must be programmed. The

version of PASCAL-SC now available for microcomputers meets these conditions; to
move in the direction of larger machines will require microprogramming and possible
new designs for arithmetic units. However, these can be based on the available
general theory of computer arithmetic [13], and so are not beyond the state of
the art. It would be particularly helpful to have wired-in interval and complex
arithmetic, and accumulators of extended length (2n + 2 digits and two bits and
4n + 1 digits and one bit) to handle the double-length products encountered in
the computation of scalar products, in addition to the short and long accumula-
tors defined in §3. Once again, there is precedent for extra-length accumulators,
the electro-mechanical IBM 602-A Multiplying Punch provided an accumulator of 120
decimal digits, which could be broken into smaller units for accounting purposes.

Users should set standards, based on (3.5), (5.1), and (6.1) for hardware and

software accuracy, to which the industry can respond. An economic pay-off to more
accuracy with fewer digits is smaller, faster, and cheaper machines.
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Mathematical Software and Mathematical Software
Libraries

Alfred H. Morris, Jr.

Naval Surface Weapons Center
Dahlgren, Virginia 22448

ABSTRACT. A brief summary of the evolution of general-purpose
mathematical software development is given. The NSWC library is
then introduced, and sources of high-quality numerical mathematical
software are provided.

1. Background

Attitudes concerning the development of numerical mathematical
software libraries have changed considerably in the last 20 years.
In the early and middle 1960's most organizations that had a com-
puter found it convenient to have a library of routines which
everyone could use. Normally the library was just a repository for
commonly used software. If a routine was found to be particularly
useful, then more often than not the routine was blindly dumped
into the library. As a result, most libraries contained a mixture
of good, mediocre, and unbelievably bad routines.

In the latter 1960's and early 1970's, because of the
increased cost in the production and maintenance of software, the
increased complexity of the problems being considered, nd the gen-
eral unreliability of many of the existing codes, the relaxed atti-
tudes concerning the formation of libraries began to change. By now
it was clear that any laboratory which employed computers for a
variety of scientific applications should contain a library of
accurate, efficient, general-purpose subroutines. It was also clear
that the formation of such a library was not a simple task. For
example, the development of high-quality software frequently
required technical expertise that was not available in-house. Also,

& it frequently required the development of new mathematical theory,
which could be an arduous and expensive process.

In 1971 the NATS (National Activity to Test Software) project
began. NATS was a joint effort by the Atomic Energy Commission and
the National Science Foundation to examine the problems, costs, and
resources involved in the production, certification, dissemination,
and maintenance of high-quality mathematical software. The project
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was centered at Argonne National Laboratory, and involved the col-
laborative effort of individuals at some two dozen university and
research laboratories. The initial product of NATS was EISPACK, a
comprehensive package of FORTRAN subroutines for eigenvalue/eigen-
vector computation. Exceedingly high quality control was maintained
in the development of EISPACK. This package has had considerable
impact. It is extensively used, and it helped to establish the
minimal software engineering standards that currently exist.

In 1970 development of the IMSL and NAG libraries began. The
IMSL library was a commercial venture by the International Mathe-
matical and Statistical Libraries corporation. To gain acceptance,
emphasis was placed on developing a quality library that was
comprehensive in both mathematics and statistics, thereby providing
greater capability than most laboratory libraries possessed. The
NAG (Numerical Algorithms Group) project began as a joint effort by
British universities and government research laboratories to pro-
duce a comprehensive numerical library. The effort is now esta-
blished as a non-profit organization. Part of NAG's income is
derived from renting its library, which places it in direct com-
petition with IMSL. The IMSL and NAG libraries are good libraries.
These and other commercial libraries have had a considerable impact
on the activities of many organizations, providing a broad capabil-
ity for a variety of computers at an economical price.

Since the late 1960's Sandia Laboratories and several other
organizations have also begun a methodical development of high-
quality numerical mathematical libraries. The purpose for the for-
mation of these libraries was not to lease or sell software, but to
provide quality software for in-house use and for general use by
other organizations. The development of these libraries represents
a significant research and development investment. In many cases, a
laboratory has leased a commercial library while developing its own
library. When this occurs, normally the two libraries (the leased
library and the in-house library) are kept separate from one
another. They tend to provide complementary rather than duplicate
capability. Currently, all libraries are deficient to some degree.
Deficiencies cannot be avoided, since there are possibly more
numerical mathematical questions that have not yet been answered
than have been answered.

2. Formation of the NSWC Library

In 1976 formation .f the NSWC library of numerical mathematics
subroutines began. The objective was to form a high-quality library
of general-purpose subroutines that would provide a basic capabil-
ity in a variety of mathematical activities. The routines were to
be written in FORTRAN. Even though the routines were intended for
use on the CDC 6000 series computers, every attempt was to be made
to ensure their transportability.

The routines in the NSWC library are selected from a variety

of sources. Obtaining suitable sources is a difficult task. It is

358



frequently made more difficult by the requirement that the library
routines he nonproprietary. Proprietary restrictions can severely
inhibit the use of software, and the subsequent research and
development that the software can generate.

All routines are subject to evaluation and possible modifica-
tion before being accepted for the NSWC library. Primary considera-
tions include the reliability and transportability of the routine,
its efficiency and ease of use, and the generality of the routine.
In regard to reliability, the major concerns are accuracy, the
mathematical stability of the algorithm being employed, and the
routine's robustness. The routine is tested, portions of its code
are examined, and an assessment is made of the utility and overall
performance of the routine. All routines in the library are period-
ically reviewed for possible improvement. When better routines are
obtained then the older routines are eliminated.

In regard to transportability, it is clear that machine depen-
dent constants and precision dependent algorithms cannot be
avoided. However, machine dependent code is not permitted. It is
assumed that the FORTRAN compiler does not alter arithmetic expres-
sions, and that the floating point arithmetic being employed satis-
fies criteria such as:

1) Additive symmetry; i.e., -x is representable as a floating point
number if x is a floating point number.

2) All small integers are represented exactly in the floating point
arithmetic.

To date, no criteria have been formulated for avoiding the problems
that can arise when these or similar conditions are violated. Gen-
erally, the policy is to accept code only if it is transportable;
i.e., only if its transference to a different computer environment
requires changes which are capable of being implemented by a pre-
processor. Sufficient documentation must, of course, be supplied to
clarify all conversion ambiguities.

The ease of use criterion for the NSWC library software is of
considerable importance. The main purpose of the library is to pro-
vide a service to as broad an audience as possible. Thus, it is
important that duplicate abilities be kept to a minimum, and that
the routines be as simple to use and as comprehensive in scope as
is practical. To meet these specifications, many specialized sub-
routines are incorporated into the library at a subordinate level,
being referenced by simple-to-use driver routines. The driver rou-
tines are fully documented in the NSWC library reference manual
[22], but the supportive routines are only referenced. The policy
of referencing supportive code, thereby inhibiting its use except
by the specialist, makes it possible to replace the code with
minimal impact to the laboratory. Also, it significantly simplifies
the situation for the novice (and most users at NSWC), thereby pro-
moting greater and better use of the software than otherwise could
be expected.
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Development of software that satisfies the ease of use cri-
terion can be characterized as a packaging problem, the objective
being to package mathematical theory and formulae into comprehen-
sive, simple-to-use subroutines. It would appear that the impor-
tance of this objective would be self-evident, but this is not
always the case. It occasionally occurs that a researcher will
design a beautiful algorithm. He will exercise great care in the
development of subroutines which compute separate portions of the
algorithm, and then he will link the subroutines together by a
poorly conceived driver routine that is difficult or almost impos-
sible to use. When this occurs, the evaluator is frequently forced
to either reject the software, or to completely repackage the
software.

In the packaging of software, extreme caution should be taken
not to unnecessarily restrict the scope and versatility of the
code. Currently the only requirement for the library software that
has a direct bearing upon this issue involves the use of I/O. No
print statements are permitted for reporting errors. If error
detection is performed in a routine, then it is required that the
call line of the routine contain a parameter which can be used for
reporting the error. The use of such a parameter permits the user
to control the sequence of events that occur when an error arises.

The evaluation of software for the NSWC library includes exam-
ination of the algorithm and portions of the code, and testing the
software. The testing serves many purposes, including determination
of the accuracy and efficiency of the software, checking for
defects in the code, and searching for regions of instability.
Because of the theoretical complexity of many of the mathematical
activities being computerized, only infrequently can the testing be
complete. Normally the testing will be highly selective, being used
to locate and examine weaknesses in the algorithm and code.

3. The NSWC Library Software

The current edition of the NSWC library contains 343 routines,
211 of which are documented in the library reference manual (22].
The remaining routines (the supportive routines) are referenced
when it is appropriate to do so. In this section a brief outline of
the major library routines is provided. It will be noted that cer-
tain sections of the library (e.g., the Special Function section)
are unusually comprehensive in scope, whereas other sections (e.g.,
the Optimization section) are still in their infancy. Approxi-
mately 40% of the routines were developed at NSWC, the remainder
originating from a variety of sources.

Special Functions

Real and complex routines are provided for computing the error
and Fresnel integral functions, the exponential integral function,
the ganma and digamma functions, and the ordinary and modified
Bessel functions (2,3,15,16]. Also real routines are available for
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computing the incomplete and inverse incomplete gamma ratio func-
tions, the complete and incomplete elliptic integrals of the first,
second, and third kinds [9,18], the Weierstrass elliptic function
for the equianharmonic and lemniscatic cases (11], and the circular
and elliptical coverage functions.

Solutions of Nonlinear Equations

A modified form of the ZEROIN routine by Forsythe, Malcolm,
and Aoler [12] is available for finding zeros of functions of a
single variable. The code is an adaptation of the ALGOL 60 pro-
cedure ZERO by Brent [5]. Also available is a routine by Jenkins
(17] for finding the roots of polynomials, and a MINPACK-I routine
[21] for solving systems of nonlinear equations.

Vectors

BLAS routines [20] for performing elementary vector operations
(such as scaling and adding) are provided.

Matrices

Included are routines for performing elementary matrix opera-
tions, both in the standard storage format and in sparse form. The
routines for the in-place transposition of matrices in the standard
format are due to Brenner [4]. Also included are LINPACK routines
[10] for inversion and singular value decomposition of matrices in
the standard storage format, and code by Sherman [26] for the solu-
tion of sparse systems of linear equations.

Eigenvalues and Eigenvectors

The EISPACK routines [28] for computing eigenvalues and eigen-
vectors appear in a supportive capacity.

Least Squares Solutions of Linear Equations

Included are routines for finding least squares solutions for
systems of linear equations with linear equality and inequality
constraints. Iterative improvement is performed in several of the
routines. The codes were written by Tsao and Nikolai [29], Lawson,
Hanson, and Haskell [13,19], and Wampler [30].

Optimization

A MItIPACK-I routine [21] is provided for computing the uncon-
strained minimum of the sum of squares of nonlinear functions. Also
included are routines for solving linear programming problems. In
the linear programming routines, the inverse of the basis matrix is
computed and stored in core..
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Transforms

The Fast Fourier transform code developed by Richard Singleton
[27] is provided.

Approximations of Functions

Rational minimax approximation using the Remes-type algorithm
designed by Cody, Fraser, and Hart [8] is available. Also available
is a modified version of the code by Rice [24] for the L. approxi-
mation of functions.

Curve Fitting

Linear, Lagrange, Hermite, and cubic spline interpolation rou-
tines are provided. Also available are least squares polynomial
approximation routines, and the Cline routines [7] for spline under
tension interpolation.

Surface Fitting

Bi-spline under tension interpolation routines are provided.
Also Akima's routines [1] are available for surface interpolation
for arbitrarily positioned data points.

Numerical Integration

Included are a modified version of Patterson's routine QSUBA
[23] and an adaptive Romberg/Newton Cotes procedure for computing
definite integrals.

Ordinary Differential Equations

Represented is the work of L. Shampine [12,14,25] for solving
nonstiff initial value problems, and a modified form of the routine
EPISODE by Byrne and Hindmarsh [6] for solving stiff initial value
problems.
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ADI PROCEDURES FOR SOLVING THE SHALLOW-WATER EQUATIONS
IN TRANSFORMED COORDINATES
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Y. P. Sheng
Aeronautical Research Associates of Princeton, Inc.

P.O. Box 2229, Princeton, New Jersey, 08540

ABSTRACT. In order to study the dynamic response of coastal water
to tides (astronomical or storm incuded), tsunamis, and/or meteorological
forcing, a two- or three-dimensional free-surface time-dependent model is
often desired. However, most such models require an exceedingly small time
step (associated with the propagation of gravity waves over the distance of
a horizu.:ral grid spacing), and hence their applications are limited. For
model efficiency alternating direction implicit (ADI) procedures are used
to solve the vertically-integrated equations of momentum and continuity for
the two-dimensional model as well as for the external mode of the three-
dimensional model. A major advantage of the subject models is the capability
of applying a horizontal coordinate transformation in the form of a piecewise
exponential strzetch. This procedure results in the application of a smoothly
varying grid to a given study region permitting simulation of a complex land-
scape by locally increasing grid resolution and/or aligning grid coordinates
along physical boundaries. Reference is drawn to various applications of
the two-dimensional model.

1. INTRODUCTION. Various mathematical models have been developed to
investigate the hydrodynamic processes of large bodies of water including
the design, operation, and maintenance of various coastal projects. This
paper discusses the mathematical development of a two-dimensional finite
difference model (Butler, 1980) as well as treatment of the external mode
of a three-dimensional model (Sheng, 1981). Both the two- and the three-
dimensional models have been. and are being, applied to a variety of Corps
of Engineers studies.

A two-dimensional model known as the Waterways Experiment Station (WES)
Implicit Flooding odel (WIFM), was first devised for application in simu-
lating tidal hydrodynamics of Great Egg Harbor and Corson Inlets, New
Jersey (Butler, 1978a). Program WIFM originally employed an implicit solu-
tion scheme similar to that developed by Leendertse (1970) and has been
applied in numerous studies where tidal, storm surge, and tsunami inundation
phenomena were simulated. Basic features of the model include flood modeling
of low-lying terrain, treatment of subgrid barrier effects, and a variable
grid option. Included in the model are actual bathymetry and topography,
time and spatially variable bottom roughness, inertial forces due to advective
and Coriolis acceleration, rainfall, and spatial and time-dependent wind
fields. Horizontal diffusion terms in the momentum equations are optionally
present and can be used, if desired, for aiding stability of the numerical
solution.
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In a three-dimensional hydrodynamic model of lake currents, Sheng et al.
(1978) separated the computation of three-dimensional velocities (internal
mode) which are governed by slower internal dynamics from the computations
of water level and mass fluxes (external mode) which are governed by fast
surface waves. This mode-splitting technique resulted in significant improve-
ment in numerical efficiency over the earlier three-dimensional model of
Sheng (1975). Recently, in developing a generalized three-dimensional model
for coastal applications, Sheng (1981) adopted a two time level ADI scheme
for computation of the external mode (water level and mass fluxes). This
ADI scheme is discussed here. A complete description of the three-dimensional
model is found in Sheng and Butler (1982) in these same proceedings.

2. GOVERNING EQUATIONS. The basic equations used in modeling hydro-
dynamics of inland and coastal waters are derived from the classical Navier-
Stokes equations in a Cartesian coordinate system (Figure 1). By assuming
(a) the pressure varies hydrostatically in the vertical direction; (b) density
variations are negligible except in the buoyancy term; and (c) eddy coefficients
are used to account for turbulent diffusion effects, the equations of conser-
vation of mass and momentum are:

u +v +w = 0 (1)Ux y

1 (2)ut I-Px ((2) + (uv) + (uw) ) + fv + (AUx +
x y z

(A Huy)y + (AV u.). (2)

- I - ((uv) x + (V2) + (vw) ) -fu + (AH vx) x +
vt P Py ((vy +V)

(AH Vy)y + (AV vz) z  (3)

Pz -pg (4)

where u, v, and w are the three-dimensional velocities in the x, y, and z
directions; t is time; f is the Coriolis parameter; g is the acceleration
of gravity; p is the pressure; p is the fluid density; AH and AV are the
horizontal and vertical eddy coefficients. Omitted for brevity are equations
for conservation of salinity and temperature, an equation of state, and
appropriate boundary conditions.

If the additional assumption of fluid homogeneity is made and a depth-
averaging process applied one can derive the usual two-dimensional form or
external mode of the governing equations, namely:

nt + Ux + v = 0 (5)t x y
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Ut= -gdrix -((U2 )X + (UV) y) + fV + E R (U xx + U yy ) +

Txs - Txb = -gd x +M x  (6)

= -gdny - ((UV) x + (V2)y) - fU + E (V + V yy)

S- T -gdny +M (7)Ys Tyb yy

where U and V are the vertically-integrated mass fluxes; n is the water
surface elevation; d is the local water depth; T and T are shear

stresses at the free surface; Txb and T yb are bottom shear stresses; and
EH is a horizontal eddy coefficient.

The discussions that follow will concentrate on solving the vertically-
integrated equations (5-7). These equations, along with appropriate boundary
conditions, completely define the WIFM model, but only the external mode of
the three-dimensional model. In the three-dimensional model the internal
mode of the flow as described by the three-dimensional velocities (u, v, w)
is governed by the equations for the perturbation velocities defined as
u' = u - U/d and v' = v - V/d. These equations and their computational
algorithms are discussed in Sheng and Butler (1982).

3. ADI FINITE DIFFERENCE SCHEMES. The differential equations (5-7)
are to be approximated by difference equations. To illustrate how various
implicit schemes can be derived consider the simplified linearized matrix
equation for these equations:

Wt + A + BWy - o (8)

where

o , 1 o ; (g o
S0 0 0 o

It will be convenient to introduce a general class of finite difference
schemes as:

1t ( e 6 ) (g e f l +  (1l - O) W ) 0(9) ,

where 6 and 6 are central spatial difference operators and 0 is a weightingx y
factor, 0 < 8 < 1. If e - 0 the above difference equation would yield the
standard two-level explicit scheme. If 0 > 0 the resulting schemes are
implicit in that more information is required than this one matrix equationprovides to solve for the values of W (resulting from the spatial difference

operators times 8 W+I) at time level, n+l. A value of 0 - 1/2 yields the
well-known Crank-Nicholson scheme while 8 - 1 yields a fully implicit scheme.
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For ease of analysis equation (9) with 8 - 1/2 can be rewritten as:

(1 + +A)Wn+l. (I - A)Wn (10)

where

SAt andA Atx -2 Ax A x adAy - y y

By adding the quantity A A (Wn+ l - Wn ) to permit factorization, theX y
following relation is obtained:

(l + X) (l + X ) W =l (1- _A (1- _y X Wn  (11)

It can be shown that the addition of the extra term is equivalent to the
addition of the truncation error

At2 a3W

4 atax3y

Thus, the factorized finite difference equation (11) is still a second-order
approximation to the differential equation (8). The advantage of using
equation (11) lies in the fact that the solution of the factorized form can
be split into two separate one-dimensional operations (the ADI approach).

By introducing an intermediate value, W*, equation (11) can be split
into various two-step operations. The most widely used scheme has the
following structure:

(1 + x) W* ( - Xy) W, (12)

(l + x) n+l (1 - Xx) W* (13)

When the intermiediate level, W*, is eliminated between equations (12 and 13)
the factorized form (equation 11) is recovered. The solution of the two-step
operation is apparent. A double-sweep solution technique is used to solve
equition (12) for W* assuming values for Wn are known. The full solution,
Wn ± , is obtained from equation (13), again using a double-sweep procedure.

Other splitting methods are presented in a later section on the discussion
of the subject models.
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4. COORDINATE TRANSFORMATIONS. A major advantage of the subject codes
is the capability of applying a smoothly varying grid to a given study region
permitting simulation of a complex landscape by locally increasing grid
resolution and/or aligning coordinates along physical boundaries. For each
direction, a piecewise reversible transformation, which takes the form:

C

x=a +b ax
x x (14)

C

Yay +b yY

where coefficientsax, ay , bx , by, Cx, Cy are arbitrary and to be determined,
is independently used to map prototype or real space into computational space.
Variables a and y are directions in computational space. This procedure
treats the computational domain as consisting of a number of regions for
which different sets of equations (as in (14) above) apply. The mapping
coefficients are determined from an iterative procedure by matching the
coordinates and stretching rates, dx/da or dy/dy, at boundaries of adjacent
regions (as illustrated in Figure 2).

The stretching does not introduce any additional terms to the equations, but
changes the horizontal gradient terms. The resulting equations are:

U+i-  o (1Px x py y (15)

Ut  - n + MP (16)
t x x

vt -- y ny+ My  (17)

P y
where ux = dx/da and py - dy/dy and M_, M' represent transformation effects
on remaining components of the momentum euations. Examples of the stretching
procedure are presented in a later section on model application. I

The bottom topography in coastal waters, estuaries, and lakes often
exhibit significant variation in the horizontal directions. When computing
three-dimensional currents, in order to maintain the same order of numerical
accuracy in the vertical direction, the (x, y, z) coordinate system (or
(a, Y, z) system) is stretched in the vertical direction into a new (x, y, a)
system (or (a, y, a) system), such that an equal number of grid points exist
in the shallow coastal and the deep offshore areas. The transformation takes
the form a - z/h(x, y) where h(x, y) is the local still water depth of the
model basin. The equations resulting from this transformation are presented
by Sheng, et al. (1978). Notice that for the external mode of the three-
dimensional model, as a result of stretching the vertical coordinate, the
M4 and M terms in equations (16 and 17) will contain a few extra terms thanx y
in the two-dimensional model.
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S. MODEL ALGORITHMS.

5.1. WIFM. The scheme used in program WIFM is a "leap-frog",
three time level scheme which can be derived from the differential equation:

wt + AW + BW + M - 0 (18)
x y

where the component variables of W are expressed in velocity form and

W-YI , A = o/
xv 0 / 0 )0

/P o O M M x

with M containing the velocity form of the nonlinear terms in the governing
equations. The approximating difference equation is written as:

(l+2A +2y) +l (1 - 2A 2;k) wn- 2,t n (19)(1+yA x y

By factorizing equation (19) and introducing an intermediate level, W the
structure for WIFM's solution algorithm can be written as:

(1 + 2x) W* = (1 - 2Xx - 4Ay) 2AMn (20)

(l+2X)+ 2 n-l (21)

The double-sweep solution technique is used to solve each operational step.
A functional representation of each sweep can be expressed as:

x-sweep

n-1 * n n-1 n-l
, u , u , v (22)

u* [ n, nn-i n n-i n n-i , v n v (23)

v * F3 [,n, n -I un , u ,n- , v, v n - ] (24)
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y-sweep

n+l = n+l vn1 (25)

tn+l _ *G2  u (26)

n+l n+l n n-i n n-i n+l * n n-i
v = G3 In n , uu ,v , v V] (27)

Noting that v is an explicit expression, a substitution of F3 (equation (24))

into G3 (equation (27)) is made. Thus each sweep consists in solving a one-
* n+l n l

dimensional problem involving n and u in the x-sweep and T and v in
the y-sweep.

5.2. External Mode of 3-D Model. Sheng (1981) implemented a two
time level fully implicit ADI scheme in computing the external mode of the
three-dimensional model:

(I + 2X ) W = (1 - 2Xy ) Vi + At 1P (28)

(1 + 2 y) Wn+ l - W + 2Xy Wn  (29)

A functional representation of each sweep can be expressed as:

x-sweep

n F I (nn, U*, Un, Vn)  (30)
•n *n

F2 (ii, U, Un , Vn) (31)

Sun, Vn )  (32)

y-sweep

I G (I Vn+ , Vn ) (33)

n+l U* (34)

Vnl -G3 (n+l nn, V* (35)

Again, as in the three time level scheme, only n and U are solved in the
fn-1

x-sweep and only n and Vn+ l are solved in the y-sweep.
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5.3. Numerical Stability. Implicit methods are characterized by
a property of unconditional stability in the linear sense. The scheme used
in WIFM as well as the fully implicit scheme used in the subject three-
dimensional is limited by a weak condition, namely,

mi (Ax, Ay)2Xy 2 /2 (36)

This same criterion can be expected to apply to the internal mode computations
since it is based on the largest horizontal convection speed. In general,
this limitation on At is at least two orders of magnitude larger than the
limit imposed on an explicit scheme by the surface gravity wave, namely,

min I (Ax, Ay) > min IAxAy (37)
x,y (U2+v2)1/2 x /

6. APPLICATIONS. Program WIFM has been used successfully in many
applications conducted at WES. These include tidal circulation studies for
Masonboro, Inlet, North Carolina (Butler and Raney, 1976), Coos Bay Inlet-
South Slough, Oregon (Butler, 1978b); storm surge applications for Hurricane
Eloise, Panama City, Florida (Butler and Wanstrath, 1976), Hurricane Carla,
Galveston, Texas (Butler, 1978c), and Hurricane Betsy and Camille, Lake
Pontchartrain, Louisiana (WES Technical Report to be published); tsunami
inundation simulations for Crescent City, California (Houston and Butler,
1979) and the Hawaiian Islands (Houston, et al., 1977). A recent paper
(Butler, 1980) summarizes these applications.

To exemplify use of the model a brief description of computational
sensitivity to modeling assumptions for a Louisiana coastal storm surge inves-
tigation is presented. As part of a study of a hurricane barrier protection
plan for Lake Pontchartrain, a northern boundary for the city of New Orleans,
Louisiana, an open-coast storm surge model of the pertinent coastal region
was developed. Figure 3 displays the computational grid used in the investi-
gation. Still water depths reach 3,000 m in the south-eastern corner of the
grid.

To insure the efficacy of all model assumptions tests were made with
varying grid limits, time steps, and still-water depth limitations (usually
made when running explicit formulated models to relax stability criterion
restrictions on the computational time step). Six grids were formed by
considering two seaward boundaries and three eastern lateral boundaries
noted in Figure 3. Five separate cutoff depths were selected: 90, 240,
400, 550, and 3,000 m. The full set of runs was thus thirty in number.
Various time steps were selected for a limited set of runs and the only
effect noted was the typical erosion of numerical accuracy with increasing
timestep. Table 1 displays peak surge elevation results for eighteen runs
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and two selected gages (locations shown on Figure 3). Hydrograph comparison

(observed vs largest grid/actual topography and smallest grid/90 m cutoff
depth) for a gage at Biloxi, MS, is shown in Figure 4. Coastline peak surge
behavior for largest grid/actual topography, largest grid/90 m cutoff depth
and smailest grid/90 m cutoff depth is compared in Figure 5.

These results are essentially self-explanatory. What is demonstrated
is that model users must assure themselves that assumptions made in model
formulation are not affecting the numerical results. The model region must
be properly selected and the deep shelf southeast:of the Mississippi River
Delta properly simulated. Inclusion of deep water in the topography
suggests the appropriateness of an implicit model, particularly if fine
resolution is required.

For a second example attention is drawn to the investigation of the
dynamic response of coastal waters in the vicinity of Mississippi Sound. A
current WES work unit calls for the application of WIFM to study the hydro-
dynamics and horizontal salinity gradient in the Sound. The model area and
grid are shown in Figure 6. Seaward boundary conditions are provided via a
Gulf tide model (Reid and Whitaker, 1982). This same grid also will be used
for a realistic test of the subject three-dimensional model. In addition,
to investigate the three-dimensional hydrodynamics on the model grid, the
currents will be used as input to a sediment transport model to study the
transport of sediments in the vicinity of the Sound. Applications of the
three-dimensional model are described in Sheng and Butler (1982).

7. CONCLUSIONS AND RECOMMENDATIONS. This paper presents details of
the development of a two-dimensional finite difference hydrodynamic model.-
Implementation of a two time level ADI algorithm to treat the external mode
of a three-dimensional model is also briefly discussed. Coordinate trans-
formations are used to obtain finer resolution in important local areas
without sacrificing economical application of the models. References are
given for specific investigations of the two-dimensional model along with
an example of model sensitivity to parameterization. An obvious extension
of the models discussed herein (as demonstrated by the conference keynote
speakers) would be the implementation of boundary fitted coordinates via
the use of elliptic grid generation techniques.
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TABLE 1. PEAK SURGE IN METERS FOR MODEL GAGES AT
BILOXI, MS AND GRAND ISLE, LA

DEPTH GRID DIMENSIONS
LIMITATION Jm) 89,51 89,46 77,51 77,48 65,51 65.46

(1) 12) (3) (4) 15) (6) (7)

(a) BILOXI, MS

90 2.7 2.7 2.3 2.3 1.8 1.8

240 2.5 2.6 2.3 2.3 1.8 1.8

3 2.4 2A 2.3 2.3 1.8 1.8

(b) GRAND ISLE. MS

go 2.4 1.9 2.3 1.9 2.1 1.8

240 2.2 1.8 2.1 1.8 2.0 1.8

3000 1.9 1.8 1.9 2.0 1.9 1.8

3.0

LEGEND

- OBSERVED WATER LEVEL

2.5 LARGEST GRID (89X61)/ACTUAL %

2.5 TOPOGRAPHY
SMALLEST GRID (65X46)/90 M
DEPTH LIMITATION

2.0

1.5

0.5

[ I I I I I I

0 3 6 9 12 1 Is 21 24 27

MODEL TIME, HR

Figure 4. Comparison of computer water levels at

Biloxi, Mississippi vs observed levels
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ASYM4PTOTIC AND NUMERICAL METHODS FOR VECTOR SYSTEMS

OF SINGULARLY-PERTURBED BOUNDARY VALUE PROBLEMS*

Joseph E. Flaherty
Department of Mathematical Sciences

Rensselaer Polytechnic Institute
Troy, NY 12181

and

U.S. Army Armament Research and Development Command
Large Caliber Weapon Systems Laboratory

Benet Weapons Laboratory
Watervliet, NY 12189

and

Robert E. O'Malley, Jr.
Department of Mathematical Sciences
Rensselaer Polytechnic Institute

Troy, NY 12181

ABSTRACT. Procedures are developed for constructing asymptotic solutions
for certain nonlinear singularly-perturbed vector two-point boundary value
problems having boundary layers at one or both end points. The asymptotic
approximations are generated numerically and can either be used as is or to
furnish a two-point boundary value code (e.g. COLSYS) with an initial approx-
imation and a nonuniform computational mesh. The procedures are applied to
several examples involving the deformation of nonlinear elastic beams.

1. INTRODUCTION. We consider singularly-perturbed two-point boundary

value problems for nonlinear vector systems of the form

x - f(x,y,t,&) , sy - g(x,y,t,e) , 0 < t < 1 (la,b)

a(x(O),y(O),e) - 0 , b(x(1),y(1),-c) - 0 (1c,d)

where x, y, a, and b are vectors of dimension m, n, q, and r - m + n - q,
respectively. We seek to find limiting solutions of problem (1) as the small
positive parameter e tends to zero; however, to do this in complete generality
is very difficult and beyond the grasp of our current understanding. Thus, we

*This research was partially sponsored by the U.S. Air Force Office of
Scientific Research, Air Force Systems Command, USAF, under Grant Number
AFOSI 80-0192 and by the Office of Naval Research under Contract Number
N00014-81K-056. The United States Government is authorized to reproduce and

A distribute reprints for government purposes notwithstanding any copyright
notation thereon.
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simplify problem (1) considerably by assuming, in addition to natural
smoothness hypothesis, that (i) g, a, and b are linear functions of the fast
variable y, i.e.

g(xytc) - gl(xt9) + G2(xt,c)y (2a)

a(x(O),y(O),c) - at(x(O),c) + A2(x(O),e)y(O) (2b)

b(x(l),y(1),e) - bj(x(l),e) + B2(x(l),c)y(l) (2c)

(ii) that G2(x,tc) has a hyperbolic splitting with k > 0 stable eigenvalues
and n - k > 0 unstable eigenvalues for all x and 0 4 t ( 1, and (iii) that q )
k and r ) n - k.

With the assumed hyperbolic splitting, we would expect y to vary rapidly
relative to (the slow vector) x in narrow boundary layer regio a. near both t
0 and 1. We thus seek limiting solutions having the form

x(t,C) - X(t) + 0(C) , y(t,C) - Y(t) + P(T) + v(o) + O(C) (3a,b)

where the initial layer correction P(T) and the terminal layer correction
v(o), respectively, decay to zero as the stretched variable

T - t/C or a - (1-t)/c (4a,b)

tend to infinity. The limiting solution X(t), Y(t) within 0 < t < 1 must
necessarily satisfy the reduced system

- f(X,Yt,O) , 0 - g(X,Y,t,O) (5a,b)

Because G2 is everywhere nonsingular, we can use Eqs. (2a) and (5b) to
determine

Y(t) - -G2-1 (X,t,0)g1(X,t,O) (6)

in a locally unique way, and there remains the mth order nonlinear differen-
tial system (Eq. (5a)) for determining X(t).

In order to completely specify the reduced solution we must prescribe m
boundary conditions for equations (5a). We do this by providing a
"cancellation law" which selects a combination of q-k initial conditions (Eq.
(2b)) and of r - n + k terminal conditions (Eq. (2c)) to be satisfied by X and
Y. In Section 2 we present a numerical procedure for determining the boundary
conditions for the reduced system that uses an orthogonal matrix E(x,t) to
reduce the matrix G2(X(t),t,0) to a block tridiagonal form so that the stable
and unstable eigenspaces say be separated. The boundary layer corrections

P(T) and v(o) in Eqs. (3) compensate for the cancelled initial and terminal
conditions, respectively, and they can be determined once X(t) has been
computed (cf. Section 2). This process avoids complicated matching
procedures.
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In Section 3 we discuss a numerical procedure for determining the
asymptotic approximation (Eq. (3)) which uses the general purpose two-point
boundary value code COLSYS to solve the reduced problem and then adds numeri-
cal approximations to the boundary layer corrections. This approximation is
considerably less expensive to obtain than solving the full stiff problem
numerically and it has the advantage of improving in accuracy, without any
additional computational cost, as the small parameter c tends to zero. How-
ever, when c is only moderately small our asymptotic approximation may not be
sufficiently accurate for some purposes, so we have developed a procedure (cf.
Section 3) that generates an improved solution by using COLSYS to solve the
complete problem (Eqs. (1) and (2)) with our asymptotic approximation as an
initial guess. In order for this approach to succeed we must also provide
COLSYS with an initial nonuniform mesh that is appropriately graded in the
boundary layers (cf. Ascher and Weiss (Ref. 2)) and we give an algrithw for
constructing such a mesh in Section 3. While our procedure does not appear to
be optimal, we show by an example involving the deformation of a nonlinear
elastic beam (cf. Section 4) that it does offer some advantage over the more
standard approach of continuation in e, where one starts with a large value of
e (e.g. e - 1) and a crude initial guess and reduces c in steps so that the
mesh is gradually concentrated into boundary layer regions.

We close Section 4 with a second nonlinear beam example that is beyond
the capabilities of our present methods because the matrix G2 is a function of
y. Flaherty and O'Malley (Ref. 6) analyzed this problem and showed that its
solution becomes unbounded as e + 0. We include the numerical solution of
this problem in this paper in order to show one of the many challenging
effects that can occur with singularly-perturbed problems.

Finally, in Section 5 we discuss our results and present some suggestions
for future investigations.

2. ASYMPTOTIC APPROXIMATION. In order to celculate the boundary
conditions for the reduced problem (Eqs. (Sa) and (61) and the boundary layer
corrections U(T) and v(a) we calculate the Schur decomposition of the matrix
G2 at t - 0 and t - 1. In particular, at t = 0 we find an orthogonal matrix
E(x(O)) such that

T-(x(0)) U(x(O))
G2(x(O),O,O)E(x(O)) - E(x(O)) (7)

0 T+Cx(o))

where T_ is k x k and upper triangular with the stable eigenvalues of G2, and
T+ is upper triangular with the n-k unstable eigenvalues of G2. The
decomposition (Eq. (7)) can often be obtained analytically; however, when this
is not possible or practical it can be determined numerically by using the QR
algorithm (cf. Golub and Wilkinson (Ref. 7) and Ruhe (Ref. 9) for specific
procedures).
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We partition E after its kth column as

E F (L E-J (8)

and note that L. spans the stable eigenspace of G2 at t = 0 and

P - ET (9)

is a projection onto this eigenspace.

Near t - 0, we assume that the terminal layer correction v is negligible,
substitute the asymptotic approximation (Eq. (3)) into the differential
equations (Eqs. (lsb)), use the reduced system (Eq. (5)), and retain only the
leading order terms to find that P(T) satisfies the condition. ,ly stable
system

du/d-r - G2(0)u (10)

where (here and below) we use the argument t to denote conditions evaluated at
x-t) - X(t), t, and e - 0, e.g.,

G2(0) :- G2(X(),0,0) (11)

Integrating Eq. (10)
G2(U)T

UCO = e U(O) (12)

We require that U( ) decays as T increases and this will be the case provided
that u(0) is in the stable eigenspace of G2(0); thus, using Eq. (9) we require

- P(0)iz(0) - F-(O)L-T(o)p(O) (13)

Using Eqs. (3), (13), and (2b) in Eq. (ib) we find that the limiting
initial conditions have the form

at(O) + A2(0) [Y(O) + E-(O).-T(O)(O)] - 0 (14)

We assume that A2(0)L.(0) has its maximal rank k and construct a q x q matrix

LT - [_L j.T] (15a)

that reduces it to row echelon form, i.e.,

A2(0)E-(O) = (15b)
L. 0

where V- Is k x k and nonsingular. Multiplying Eq. (14) by L and using Eqs.
(13) and (15) gives the initial layer jump and the q-16 initial conditions for
the reduced problem, respectively, as
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U(o) - -L.(O)V_-.L[.a1(X(O),O) + A2(X(O),O)Y(O)J (16a)

and
a(X(O)) :- L.Ial(X(0),O) + A2(X(0),O)Y(O)J - 0 . (16b)

We find the terminal layer jump and the r - (n-k) terminal conditions for
the reduced problem in an analogous fashion with the exception that we define
E(x(1)) such that

T4 (x(l)) U(x(1))
G2(x(1),1,0)E(x(0)) - E(x(l)) .. )

0 T_(x(1))

which we partition after its (n-k)th column as

E - [E+ 9+] (18)

In parallel with Eqs. (7) and (8), the matrices T_, T+, and E+ contain the k
stable eigenvalues, the n-k unstable elgenvalues, and span the unstable eigen-
space, respectively, of G2 at t - 1. Our reasons for switching the positions
of the matrices containing the stable and unstable eigenvalues of G2 is that
there is no simple and stable computational procedure for finding a set of
vectors that span a given subspace and are not in the leading columns of an

orthogonal matrix like E (cf. Golub and Wilkinson (Ref. 7)).

Now, following the procedure that we used for the initial layer, we find
that the terminal layer correction satisfies

G2()a
v(o) - e v(O) (19)

In order for v(v) to decay as a increases we require v(o) to be in the
unstable eigenspace of G2(1); thus, we take

v(O) - Q(M)v(o) - .(1) 4 T(1)v(O) (20)

where Q is a projection onto the (n-k) dimensional unstable eigenspace of
G2(0) -i

We assume that 52(1)E+(I) has its maximal rank n-k and find a r x r

matrix

:T - JR+T T] (21a)

that reduces it to the row echelon form

R. B2(1)4(1) * (21b)

R4. 0
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where V+ is (n-k) x (n-k) and nonsingular. Multiplying Eq. (id) by R, using

Eqs. (2c), (3), (20), and (21), and retaining only the leading order terms we
find the terminal layer jump and the r -(n-k) terminal conditions for the
reduced problem, respectively, as

v(O) - -E+( 1)V+-IR+[b 1 (X(1),O) + B2(X(t),O)Y(1)] (22a)

and

Y(X(1)) :- R.[b(X(1),0) + B2 (X(1),O)Y(1)] - 0 (22b)

In the interest of brevity, we have omitted several details of our
construction and have not attempted to justify the asymptotic validity of our
procedure. These topics will be the subject of a forthcoming paper by
O'Malley and Flaherty (Ref. 8).

3. NUMERICAL PROCEDIrRE. Our computational procedure consists of first
solving the reduced problem (cf. Eqs. (5a), (6), (16b), and (22b)) numerically
and then adding any boundary layer corrections. Since the reduced problem is
not stiff we can use any good code for two-point boundary value problems (cf.
Childs et al. (Ref. 3)) and we have chosen to use the collocation code COLSYS
of Ascher, Christiansen, and Russell (Ref. 1).

Since the reduced problem is generally nonlinear and since COLSYS solves
nonlinear problems using a damped Newton method we have to supply formulas for
evaluating the Jacobians of f, Y, 0, and T with respect to X. We do this by
providing analytical formulas for these Jacobians that neglect the influence
of the derivatives of E, L, R, and G2. This procedure has not failed on any
of our examples; however, an alternate possibility would be to approximate the
Jacobian by finite differences.

We start the Newton iteration with a uniform mesh and the default initial
guess x(O)(t) for X(t) that is provided by COLSYS and calculate successive
approximations X(P)(t) until convergence is attained. At each iteration step
we calculate an approximation E(P)(t) to E(t) for t - 0 and I as the Schur
decomposition of G2 (X(P)(t),t,O). In the examples of Section 4 we used
analytical formulas for E rather thar. the numerical procedures of Golub and
Wilkinson (Ref. 7) or Ruhe (Ref. 9). Finally L(P) and R(P) are obtained
using Gaussian elimination to row reduce A2 (x(P)(O),O)E_(P)(O) and

B2 ( X(P)(1),O)E+(P)(1), respectively.

When the above procedure converges we calculate boundary layer
corrections P(T) and v(o), for a given value of e, using Eqs. (12), (16a),
(19), and (22a), and add these to the reduced solution in order to get the
0(e) asymptotic approximation (Eq. (3)). For moderately small values of E
this approximation may not provide a sufficiently accurate representation of
the solution and, in this case, we use it as an initial guess to COLSYS and
solve the complete problem (Eq. (1)). Unfortunately, this procedure will fail
unless we also provide COLSYS with an initial nonuniform partition

w : {0 = to < tI < ... < tN = 1) (23)
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that is appropriately graded within the boundary layers. We seek to find w so
that the pointwise error satisfies

Jje(ti)j 4l 6(1 + 1lu(ti)JI) , i= - ,2,...,N-1 (24)

where 6 is a prescribed tolerance, uT :- [xT,yT], e is the difference between
u and its collocation apprnximation, and

Iu(ti) I :- max Iuj(ti)l (25)
1 4j (m+n

We have based our condition for determining w on a pointwise error criteria
since this seemed to work better in practice than a global criteria. This is
somewhat surprising since COLSYS uses a global error criteria to select a
mesh.

We assume that the final partition selected by COLSYS to solve the
reduced problem satisfies equation (24) outside of boundary layer regions and
we seek to refine it within the boundary layers. We further assume that
derivatives of u can adequately be replaced by either ,(T) or v(a) in the left
or right boundary layer, respectively.

This problem was studied by Ascher and Weiss (Ref. 2) who showed that
Eq. (24) could be approximately satisfied in the left boundary layer by
choosing subinterval lengths as C 601+Iu(ti-01) 1 /2k

ti - ti_1 - (--)[ ---------- (26)C - c l tI - )

for collocation at the image of k Gauss-Legendre points per subinterval. Here
c is a numerical constant and a- is the magnitude of the largest diagonal
element of T_(X(O)). A similar formula can be obtained for selecting
subinterval lengths in the right boundary layer.

Starting with i - I we use Eq. (26) to generate a partition until we
either reach t - 1/2 or a point where a subinterval length selected by Eq.
(26) is larger than that used by COLSYS to solve the reduced problem. We then
repeat the procedure in the right boundary layer.

We riave written a computer code called SPCOL that implements the
algorithms that are described in this section; thus, it (i) uses COLSYS to
solve the reduced problem, (ii) calculates and adds appropriate boundary layer
corrections to the reduced problem, and (III) (optionally) suggests a mesh
that can be used by COLSYS to solve the complete problem.

4. EXAMPLES. In order to appraise the performance of SPCOL we have
applied it to several examples involving the deformation of a nonlinear
elastic beam which is resting on a nonlinear elastic foundation and is
subjected to the combined action of a horizontal end thrust P and a lateral
load p(x,t) per unit length (cf. Figure 1). This problem is discussed and
analyzed in detail in Flaherty and O'Malley (Ref. 6) and herein we only
present the governing equations, which in dimensionless form are
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;I =CO x , ;2 - sin x3 , ;3 =Y (27a,b,c)

£71 -Y2 E £72 - (X2x2-p) cos x3 - Ty1 , (27d,e)

where

T = sec x3 + £y2 tan x3 (27f)

The slow variables (xl,x2) and x3 represent the Cartesian coordinates and the
tangent angle of a material particle on the centerline of the beam that was at
the Cartesian location (t,O) in the undeformed state. The fast variables yj
and Y2 are the internal bending moment and transverse shear force,
respectively (ef. Figure 1). Finally, the small parameter is

E2 _ EI/PL 2 , (28)

where I is the flexural rigidity and L is the length of the beam; thus, our
beam is such stronger in extension than it is in bending.

This example does not precisely fit out hypotheses since the axial force
T is a function of the fast variable y2 and, thus, G2 also depends on y.
However, our theory and methods will still apply as long as y remains bounded
and 1x31 < w/2 as e + 0. In order to illustrate the diverse behaviors that
can occur when y either does or does not remain bounded as e + 0 we present
solutions for two problems both having A - p - 1 and which differ only in
their boundary conditions. Some additional examples are presented in Flaherty
and O'Malley (Refs. 6 and 8).

In our first example we take the boundary conditions as

Xl(O) - 0 , -1Ox2(O) + y2(O) - 0 , -x3(0) + lOyi(0) - 0
(29)

10x2(1) + Y2(1) - 0 , 1Ox3(1) + Y(1) - 0

These supports correspond the a beam that is almost simply supported at t = 0
and almost clamped at t - 1. However, perhaps due to friction, there is some
coupling between lateral and rotational effects at the supports.

As we shall see, y remains bounded in this example so our methods are
applicable. The orthogonal matrix

E(x(O)) = (1+a 2 ) -  •:(30a)

where
Q2  sec x3(O) (30b)
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reduces

0 -1
G2 (x(O),O,O) - (31)

to the Schur form given by equation (7) at t - 0 and ET will reduce
G2 (x(1),1,O) to the form given by Eq. (17) at t - 1.

We solved this problem in two ways: (i) using COLSYS to solve the
complete problem (Eqs. (27) and (29)) with continuation from a large to a
small value of e and (ii) using our code SPCOL to compute an initial
asymptotic approximation and to recommend a nonuniform mesh and using this
with COLSYS to calculate an improved solution. All calculations were
performed in double precision on an IBM 3033 computer, used two collocation
points per subinterval, and set the error tolerance 8 (cf. Eq. (24)) at 10-
for slow variables and 10- 3 for fast variables.

Our results for the normalized CP times and the number of subinterval-
(NSUB) that are either used by COLSYS or recommended by SPCOL are shown in
Tables 1 and 2 for continuation in e and our methods, respectively. Differ-
ences between our initial asymptotic approximation and the final solution
obtained by COLSYS are shown for x3 and Y2 at t - 0 and 1 in Table 3. We see
that the differences decrease like 0(0) as expected. Differences that are
recorded as zero are less than 10-8. Finally, we exhibit solutions for x2,
x3, yl, and Y2 in Figure 2.

The results reported in Tables 1 and 2 need some additional explanation.
The number of subintervals and CP times used with continuation depended heav-
ily on the c sequence that was used. The results in Table 1 are about the
best insofar as they gave the smallest total CP time for the sequence. In
addition, COLSYS relies on the difference between solutions that are computed
on two different partitions in order to estimate local errors. Thus, at a
minimum, COLSYS would always double our suggested mesh. This is apparent in
the results listed under the heading of "COLSYS Correction No. 1" in Table 2.
In some sense these results are encouraging insofar as they indicate that our
mesh selection strategy is doing about as well as it can, at least for
e 4 10-2. However, it seems that fewer points should be necessary, so we
tried giving COLSYS an initial mesh that consisted of every other point of our
recommended mesh. This is clearly a risky strategy since collocation at the
Gauss-Legendre points is known to be unstable unless the mesh is sufficiently
fine in the boundary layers (cf. Ascher and Weiss (Ref. 2)). Our results
using this are reported under the heading of "COLSYS Correction No. 2" in
Table 2. Some Improvement is noted for C > 10-4; however, COLSYS failed to
find a solution (within our prescribed limitations) when c - 10-8.

In our second example we use the boundary conditions

Xi(0) - 0 , -x2(0) + CY2(0)- 0 , -x3(0) + £2 yl(O) - 0
(32) :

x2(0) + EY2() - 0 , x3(0) + E2 yl(1) - 0 (32
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If E were set to zero then these boundary conditions would correspond to
clamped supports at t - 0 and 1. Since the limiting boundary conditions only
involve the slow variables and since the slow vector x cannot generally
satisfy all of them as e + 0 we would expect the solution to have boundary
layers in these components. This in turn will force the fast vector y to
become unbounded like 0(1/e) at the endpoints! Thus, this problem does not
have an asymptotic expansion having the form of Eq. (3); however, an
appropriate asymptotic representation of a solution has been obtained by
Flaherty and O'Malley (Ref. 6). We shall not repeat those results here, but
in order to emphasize the diverse behavior that can occur in nonlinear
singularly-perturbed problems, we present solutions for x2 , x3, Eyl, and Ey2
in Figure 3. These solutions were computed using COLSYS with continuation in

5. DISCUSSION. We have obtained asymptotic approximations for a
restricted class of nonlinear singularly-perturbed boundary value problems and
have shown how to construct them numerically and use them to suggest a nonuni-
form mesh that may be used as input to a two-point boundary value code in
order to calculate improved solutions. Clearly this approach offers some
advantages over the more standard technique of continuation in e steps; how-
ever, the picture is far from clear and several questions still remain as to
how best to use asymptotic analysis in conjunction with numerical analysis.

As we have shown in our second example of Section 4, very diverse
behavior in the solution of singularly-perturbed problems can result from
seemingly minor changes in boundary conditions. Some phenomena cannot easily
be predicted, so perhaps a sensible course to follow is to use asymptotic and
numerical methods in tandem. For example, a rough numerical solution could be
obtained for several values of e which could then be used to suggest the form
of an asymptotic solution. The asymptotic approximation could then be used to
refine the numerical solution, and so on. It is also possible that singular
perturbation theory could be used to construct special methods that are
appropriate for specific problems as e.g., in Flaherty and Mathon (Ref. 4) anid
Ascher and Weiss (Ref. 2).

Throughout our discussion we have ignored the question of uniqueness. In
general, multiple solutions can be expected and they must be coped with
numerically. In Reference (5) we showed how asymptotic methods may be used to
distinguish the different solutions and to provide initial guesses for a
two-point boundary value code.
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TABLE 1. NONLINEAR ELASTICALLY SUPPORTED BEAM. NUMBER OF SUBINTERVALS (NSUB)
AND CP TIMES USED TO SOLVE THE PROBLEM *" COLSYS WITH CONTINUATION
IN c. THE TOTAL CP IS THE ACCUMULATED TIME FOR THE c SEQUENCE.

NSUB CP Total CP

10-1 80 8.0 8.0
10-2 78 9.0 17.0
10-4 78 19.5 36.5
10-6 156 44.5 81.0
10-8 100 19.0 100.0

TABLE 2. NONLINEAR ELASTICALLY SUPPORTED BEAM. NUMBER OF SUBINTERVALS (NSUB)
AND CP TIMES TO SOLVE THE PROBLEM BY SPCOL AND OBTAIN AN IMPROVEMENT
BY COLSYS. THE CP TIMES FOR SPCOL INCLUDE THE TIME TO CALCULATE THE
REDUCED SOLUTION WHICH WAS 4.8 TIME UNITS. CORRECTION NO. I USES
THE MESH THAT WAS RECOMMENDED BY SPCOL. CORRECTION NO. 2 USES A
MESH THAT IS TWICE AS COARSE. THE TOTAL CP IS THE SUM OF THE TIMES
FOR THE SPCOL AND COLSYS SOLUTIONS.

COLSYS COLSYS
SPCOL Correction No. I Correction No. 2

Rec. No.
C of NSUB CP NSUB CP Total CP NSUB CP Total CP

10-1 40 4.9 100 12.0 16.9 80 12.1 16.9
10- 2 45 4.9 90 12.0 16.9 78 8.1 12.9
10-_ 54 4.9 108 16.9 21.8 66 9.2 14.1
10-8 55 4.9 110 17.5 22.3 Failed

TABLE 3. NONLINEAR ELASTICALLY SUPPORTED BEAM. DIFFERENCES BETWEEN SPCOL

AND COLSYS SOLUTIONS, WHERE A( ) : ( )SPCOL- " )COLSYSI

6 Ax3 (0) Ay2(0) Ax3(1) AY2(1)

10-1 3.3x10-  5.lx10- 2  6.8x10-1 3.6x1O-1
10- 2 2.8x10- 2 6.6xlO- 3  6.lx10- 2  3.9x10- 2

10-4 2.7x1O- 4 6.8xi0- 5  6.1x 1O-  3.•9xlO -

10- 8 0 1.3xI0- 7  0 0

392



x 2  

p( ,

p p

I~~ 
(x)WX

x2  Y'2 T

I 1,

Figure 1. Geometry, loading, force, and moment conventions

for nonlinear beam.

393



C2 - 1

Ci

Ica

a

00 0.20 0.40 0.60 0.90 toG 00 0.20 0.40 0.60 0.60 1.00
t t

-S1

Lu 10'
Ai

0.0 0.0 040 00 0.60 to00 0.00 0.20 0.4 0.60 Loo 1.0G
t t

Figure 2. Numerical solution of elastically supported beam with
boundary conditions given by Equations (29).
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AN INTEGRAL EQUATION FOR THE DESIGN OF MAGNETIC FIELD COILS

J.F. Schenck, M.A. Hussain,* W.A. Edeistein, B. Noblet
Electronics Systems Programs Operation

Corporate Research and Development
General Electric Company

INTRODUCTION
We have investigated the use of the calculus of variations to design magnet coils that

have a minimum stored energy. In particular, we have considered the problem of ctmputing
the winding density along a cylindrical surface that will minimize the stored energy, while at
the same time produce a magnetic field with certain desired characteristics. These desired
characteristics are prescribed as constraints on various coefficients in the spherical harmonic
expansion of the magnetic field. They are introduced into the minimization problem by the
use of Lagrange multipliers.

This process leads to a linear integral equation of the form:

f Q. (Z-Z'- ()Z') dZ'. - f (Z.), - Zm < Z. < Zm

with

f (Z') - IXf(,

where a is the radius of the cylinder, Z 0-z 0/a is the normalized position of the winding ele-
ment along the cylindrical axis, o(Z) is the unknown winding density, Z, is the half-length
of the coil, the A, are Lagrange multipliers, and the f,,(Z,) are prescribed functions.

The kernel Q(Z0-Z'o) is symmetric and has a logarithmic singularity at Z0-Z'; it can
be represented in terms of complete elliptic integrals:

Q(Z')- 4 flt, Ai K(k) - E(k4
with

k2. 4
4+ (Z 0-Z',) 2

A numerical method using discretization at half-integer points and using exact integration of
the logarithmic singularity has been used. This method converts the problem of solving the
integral equation to the problem of inverting a Toeplitz matrix. Results are presented and
discussed.

Information Resources Operation
t Mathematics Research Center, University of Wisconsin, Madison, WI
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1. REPRESENTATION OF THE MAGNETIC FIELD
In this section we briefly outline the derivation of magnetic flelr, representation in

terms of spherical harmonics. Consider a single coil on a cylindrical surface, as shown in Fig-
ure 1. From the Biot-Savart Law we have:

R 2 - (x-x)2 + (y-y 0 )2 + (z-z)' (2)

dA - a2 d.o dZo

x

r. Y. 0,z ro. So 0

I r0,* *

I

Figure 1.

where B is the magnetic field, 1 is the surface current-density vector and has the dimensions
of amperes/meter. R is the distance between field (x,y,z) and source (xo,,y 0 ,zo) points. The
z-component of Eq. I can be represented in the differential form as:

JAdA __ idB, - 4 \r a. y - ,' (3)

In Eq. 3 we have taken the derivatives with respect to source rather than field variables.
Hence the change in sign. Using the notation of Figure 1, R may be expanded in terms of
Legendre polynomials (Ref. 1, p. 173):

1P Prl (cos 0 *), r<r,
I 1 -olroI~ - I I 'AI" 4

R (r 4 rol- 2 rr, cos)' ;F I . I

- Io P.(cos9*), r> r,
r ,-o r

In Eq. 4 the argument of the Legendre polynomials is 00, the angle between the field and
source points. It is useful to use the biaxial harmonic expansion (Ref. 2, p. 164) to write
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these functions in terms of (9,#) and ( the angles in the spherical coordinate represen-
tation of the field and source points.

P,(cose)- ] (2-8.) (n-r)! P(cose) P'(cosO)cosm(-O.) (5)M-0 (n+rn)!

Here 80 is the Kronecker delta. It is equal to one when m-0 and is equal to zero otherwise.
Substituting Eq. 5 into Eq. 4, we have:

1 ,

1u4 I 'nr1(-r) 6"R I- " (2-80) (n-m)P p?(coso) P(cosO,)cosm(4,- ), r>r,
o -0 rJ (n+m)!

It can be seen from Eq. 3 that we need the cartesian derivatives of this representation. The
necessary formulas can be derived from the integral representation of the solid spherical har-
monics (Ref. 4, p. 1270). These harmonic functions are given by (Ref. 3, p. 369):

r" C,, - r"P'(cos )cos mO

r".,. - ro P(cosO)sin mO
r-M- C, - r-- P,'(cosO)cos m4A (7)

r S,,. - r"-'P'(cos )sin m0

Using the integral representation given in Ref. 4 (p. 1270), and after some algebraic manipu-
lation, it can be shown that:

L (r-" -IC,,,) = (1"laZ) I- 4 rl C+,.+I + - (n --m+l )(n r+2)r 2 Cl+h -

X2 2
(8)

(I '-- nn,) - ( - " r- Sn+ir+i- 4 (n-m+2)(n-m+l)r-2S+., ! I
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Additional expressions for the cartesian derivatives of these functions are given in Ref. 5.
Substituting Eq. 8 into Eq. 3 we have:

dBl - - . 0dA " P,',(cosO)
n-2O (n-i)!

I-v;~ [C.+im+i + (n-m+1) (n-m+2) C+,,.I Cos m#0

+x[r7 I-SR+,m.+ + (n-m+2)(n-n+I) SIn+I.m-lO sinmo J (9)

Similar expansions can be derived for the other cartesian components of the magnetic field,
and for r> r.. Apparently these expansions have not been previously published.

Equation 9 represents an expansion of the z-component of the incremental magnetic
field produced by an arbitrary element of surface current. It will converge for any origin such
that r< r0 . Each term is the product of a factor (r"P, n"(cos9)cos mo or r"P,'(cos9)sin m4)
that depends only on the field coordinates and of a factor that depends only on the source
coordknates.

4i
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2. THE CLASSICAL APPROACH TO COIL DESIGN
For illustrative purposes consider a cylindrically symmetric case, with a circular surface

current density which is a function only of Z,

X,--cow# (Z.) sin0. X,- co' (Z,) (10)
X) - c , # (Z.) cos*. (11)

The function o',(Zo) is a dimensionless "shape function". The constant c is determined
from the total number of ampere-turns, NJ, on the coil and by the normalization of o'#(Z,).

N - f k,,dZ. - caw, W fZo (Z,) dZO
-OZ. aw, Z

With dA - a2d#,dZo, integration of Eq. 9 over the variable #,, gives zero for those terms
with m00. We are left with:

B, . - f ,a#(Z) r+2 dZo r"P,(cosO) (12)

Substituting r2/a 2 . (1+Z 2), we have

B..- 1 A~rnP.(cos9) (13)
n-0

A , C f Z-o (z) P,1+, (cos0.) .. C (14)
A , 'Jz, + dZ - 2a"

(I+Z 0
2)- 2

Now, consider a pair of discrete coils which can be represented by

a.(Z.) - 8(Zo-ZC) + 8(Zo+Z,). (15)

We are not, at the moment, concerned about the normalization of ao4 (Z.). From Eq. 14 we
have

An ,+2 1P.,+, (cos@,.)+ Pn+j (-cos0,)j n-0,2,4,- (16)

2a(1+Z 
2) 2

A. - 0 n- 1,3,5, • - •

A first attempt at achieving a uniform field is to pick Z, such that the coefficient of the
second order (n-2) term in the expansion vanishes. That is

P! (cosec) + PI (-coss,) - -3(sino,) (5cos 2s,-1) - 0 (17)

This gives C 71os-1 (VI7R). This result implies that the coils should be separated by a dis-
tance of one radius from one another.

A gradient field can be produced by using a discrete pair with the current reversed in
one coil. Then

a,(Zo) - 8(Zo-Z,) - 8(Zo-Zc)
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Using Eq. 14 we obtain

A, ,+_. 2 P-+i (cosG0) - P,+ (-cosec) , n-1,3,5, • • , (18)

2a(l+Z ) 2

,, - 0 n-0,2,4 ...

To obtain a gradient coil corrected through the third term in the expansion we nzed
P4 (cose) - PI (-cose0) - 5(sin9,)(7cos-9e- 3cos9c) - 0. 19)

The useful root of Eq. 19 is jiven by 0, - cos- ' (077). This implies that the coils should be
separated by a distance of 43 times the radius of the coil. Note that these two solutions are
given by the zeroes of the functions g2 and g3 in Appendix 1.

x X

a

Helmholtz Pair Maxwell Pair

Figure 2.

The two coils discussscd above arc rerrcd to respectively as Ihe llelmholtz pair (used
for uniform fields) and the Maxwell pair (used for linear gradients). Both these designs were
discovered in the nineteenth century (Ref. 6, pp. 356-359).

In this century the technique outlined above has been refined by several authors (e.g.,
Ref. 8). The greatest advances have been accomplished by M.W. Garrett (Ref. 7), who pro-
vided algorithms for correcting the fields of cylindrically symmetric coil systems through arbi-
trarily high orders. Hc also described methods for designing such coils with arbitrary rec-
tangular cross sections, thereby removing the restriction to discrete filaments.

The requirement that a given coefficient or coefficients in the expansion of Eq. 13 be
zero does not, however, uniquely specify a coil design. In fact, it is easy to see that, if we
permit the use of multiple pairs of coils, there are an infinite number of designs that will, for
example, make the coefficient A 2 equal to zero. In the next section we outline a method for
choosing among the large set of coils that meet a given requirement on the expansion
coefficients.
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3. THE DERIVATION OF THE INTEGRAL EQUATION
A common design problem is to find a coil that will produce a field that meets certain

homogeneity criteria over a prescribed region of space. This requirement is usually given in
terms of the expansion coefficients using an origin at the center of the region of interest.
However, the coil will necessarily create fields in regions of space other than the region of in-
terest. It is often desirable to keep the energy in this unused region to a minimum. This is
particularly true when it is necessary to pulse the field on and off rapidly. Therefore we have
investigated the problem of designing coils that will meet certain prescribed field characteris-
tics and, at the same time, minimize the total stored energy in the magnetic field. In free
space each cartesian component of B can be shown to satisfy Laplace's equation and, there-
fore, can be written as a sum of solid spherical harmonics (Ref. 4, p. 1271). Although the
method can be applied to more general situations, because of their technical and historical im-
portance, we will consider, for the rest of this paper, coils wound on the surface of a cylinder
and required to produce a z-component, B,, of a prescribed character. The energy (in terms
of inductance, L, and current, I) is given by (Ref. 2, p. 332):

W- 2 -I. dA (20)

where ,4 is the vector potential. From Poisson's solution to Laplace's equation (Ref. 1,
pp. 167, 230)

-..1A 
(21)

Consider a circular surface current with cylindrical symmetry

- c a(Z,) (- sin¢ .0, + cos 0 j - cro(Z 0 ); (22)

Substituting from Eqs. 22 and 21 into Eq. 20, and carrying out two integrations over angular
variables (see Ref. 2, p. 290 and Appendix 2), we have (using the notation of the previous
sections)

-1 L 2- 2 I -- K(k) - E(k) dZodZ', (23)

where K(k) and E(k) are the complete elliptic integrals of the first and second kind, respec-
tively, and

k 2. 4 (24)!4+ (z0 -z ')2

The magnetic field along the axis is given by Eqs. 13 and 14 as:

B, - Ar"P,(cosO) (25)

with

.._C Z o P,+. (cosG0.)dZ,
TA f'Z .) + (26)

(I+ z)03
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Using Lagrange multipliers, we construct the functional as
f(') - f Z , Z(.(z.)(Z'o) Q(Z-Z'o) dZ.dZ'o

-Z. -Z. z

+ 1 ?" f sr*(Z. ) f.(Zo)dZ° (27)
R

with the kernel

1.W E(01 (28)

and
fn(Zo) - P.1+ 2 (corn ) . 2,+3 (29)

(+z) 2 (+zI) 2

The g.(Z.) are polynomials that can be used to express the associated Legendre functions in
cylindrical coordinates (Ref. 2, p. 215). They are listed in Appendix 1. To make Eq. 27 sta-
tionary near the exact solution, or,(Z.), let the trial function, a#* (Z°), vary in the neighbor-
hood of the exact solution, i.e.,

a#*(Zo) - 0'0(Z,) + e't(Z.) (30)

where e is a small parameter and qj(Zo) is an arbitrary function. Substituting Eq. 30 into
Eq. 27, we have

1(o.,#) - i(ao) + if Z.,( ) c.,(z.)Q(Zo-Z'°)dZ 0 .+ .f.(Z'o) dZ'o

+ o(e2) (31)

Equation 31 will be stationary around the exact solution if the coefficient of e vanishes,
i.e.,

f o'(Z) Q (Z.-Z',) dZ,, + 1 xf(Z') - 0 (32)

Equation 32 is a linear Fredholm integral equation of the first kind. It is to be solved for the
unknown function, #7,(Z,,), which will minimize the energy. The X, are to be determined
from the prescribed constraints. For example, if we wish to create a uniform field with zero
coefficients for the quadratic and quartic errors, three constraints are required

Z.

(Z) f2(Zo-dZo - 0 (2nd order correction) (33)

So(Z f 4(Z)dZ. - 0 (41h order correction).

7.

The first of these constraints serves to normalize o.(Z.). An arbitrarily high degree of
homogeneity can be achieved by requiring any desired number of additional coefficients, A,,
to be zero. It is noted that the kernel has a logarithmic singularity at Zo-Z'o, i.e., by using
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the expansions for K () and E(k) near k-I (Ref. 11, p. 73), we have
1Z 2  Z4

Q(Z) - (U-2) + -?- (3U - 1) - 49 [30U-311

+ 21O U-2471 + O(ZI)  (34)
196608

U- In 8- Z<<I

It has not been possible to obtain the solution of the integral equation in closed form.
However, an approximate numerical solution may be found by discretizing Eq. 32 (Ref. 13).
We divide the region from -Z to Z into 2N subunits of width 8Z0-Z,,,/N. We construct
an array of linear equations

2N
1, AU o'j - fi (33')
j-I

where

fill " f. I ' 1/2 - N)j

Here o.j and f, are the values of the associated functions at the half-integer points and

Zn, I Z I 1i I~ d

AU- I ln I II 1 i-j

The desired solution is found by the inversion of the matrix AU. We have used the IMSL
routine LEQTIF (Ref. 12). The linearity of the system permits us to solve Eq. 33' for an ar-
bitrary f,(Z), and then to use superposition to meet the constraints and determine the
Lagrange multipliers. We thereby produce an approximate numerical solution to the system
of equations 32 and 33.

The matrix Au is seen to have the Toeplitz property. That is AU is a function of i-j I
only. Because Q(Z) is singular at Z-0, Aij for i-j is computed by integrating the first term
in the expansion in Eq. 34 across the appropriate interval.

7./2N 8 sAj j [2in --1 dZiR f 7.12 1 n 2 d

We have used this method to solve for the cr,*(Z,) that minimize the total energy and
provide for field uniformity by eliminating coefficients through the 18th order for various
values of Z,. We have also applied the method to the design of gradient coils required to
achieve a high order of linearity by eliminating coefficients through the ninth order. These
results will be given in a forthcoming report.

Figures 3 and 4 illustrate the solutions obtained for zero order and second order con-
straints on the homogeneity, respectively. In these examples Z,,-3 and N-90. Note that
the solution with no homogeneity constraint can be approximated by a single short, uniform
solenoid centered on Z,-O. Also the solution where the second order term is zero can be ap-
proximated by a pair of short solenoids approximately centered at the location of the
Helmholtz pair. In general it appears that although a,(Z0 ), the solution that actually mini-
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mizes the stored energy, will vary continuously with position, there will always be designs
with only slightly increased stored energy that are a series of short uniform solenoids centered
at the maxima of o'4(Z.).

A.IA

OA S Cas
.- -. -

-e 3 - -3 -- -- - . - -

Z. Z.
Figure 3. No corrections. Figure 4. Second order correction.

The solutions obtained for the values of Z, not close to *4Z have been sufficiently
accurate for practical purposes for N >50. Increasing N from 50 to 90 changed these values
only by a few percent. However, the solutions contain a singularity as Z. approaches Zm.
This singularity is sufficiently weak for large Zm that it is not apparent in Figures 3 and 4.
The singularity is apparent in all solutions obtained for Zm< 1.5 or so, and is discussed in the
next section.
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4. ANALYSIS OF THE EDGE SINGULARITY
The logarithmic singularity in the kernel appears to force the solution to have a singu-

larity of the form

C (34')
-/zz- z.

as Z, approaches * Z, (Refs. 10; 16, p. 536ff; 17, p. 447ft). Here C is a constant deter-
mined by the details of the problem. This integrable singularity is sufficiently weak that it or-
dinarily will have no practical effect on coil design. However, it places in question the validity
of approximating o,(Z.) by its value at the half integer points for the points nearest the
edges at Z. - * Z,,.

This edge effect can be investigated by using the discretization process developed in the
previous section to solve an analogous integral equation which has a known closed form solu-
tion (Ref. 9, p. 143). Consider the integral equation

f n In - s f(s)ds -. ir In

-Z' < t < Zm. (35)

This equation resembles Eq. 32 in that it is a linear Fredholm equation of the first kind and
the kernel has a logarithmic singularity at s-t. However, the exact solution to Eq. 35 is
known to be

( Z.1 1 (36)

We convert, as before, from integral equation (35) to a system of linear algebraic equations
2N :TA 'of/'-v In 2(37)

I-I 9"

by taking

fi-fI- In - I v-

for Ii, A '. is computed, as before, by integrating across the singularity.

A' j -m -Z./2N I sbd

Consider Iw and 1 2N, the approximations to f(s) at the extreme edge positions ob-
tained by inverting the Toeplita matrix in Eq. 37. By symmetry fi - f2N. The exact value off(s) at midpoint of the edge interval is

N 1

- -/'-'

A Po Z In(38

W N r -



where S2V- . I1j!~

Table I illustrates, for several values of N (for Zm- 1), the ratio of f2N/f and the as-
sociated correction factor discussed below. The third column of Table I shows that, despite
the presence of the edge singularity, the numerical method provides an estimate which is only
about 33 percent too high. This estimate can be further improved in a second approximation
by dividing fI and f2N by a correction factor, Cf

C,. -2(39)
- 2,'/- In I Z- I

D-lIn 4-+ M2 -1.0657

This factor is obtained by integrating exactly the known form of the solution (containing the
square root singularity) multiplied by the kernel (containing the logarithmic singularity) over
the intervals at the edges. It does not depend on the value of C in Fq. 34'.

Table I

EDGE EFFECTS FOR Z. - 1
AND SEVERAL VALUES OF N

N cf f2N/f
10 1.3103 1.3161
20 1.3315 1.3276
30 1.3402 1.3314
40 1.3452 1.333
50 1.3486 1.3341
0V2 1 __

The important feature of the correction factor in Eq. 39 is that it is independent of the
details of the numerical solution and depends only on the form of the singularity at the edges.
Thc apparent convergence of the two columns in Table I as N increases suggests that the er-
ror in the values of f1 and f2N can be substantially improved by simply dividing them by the
factor c1 without further modification of the matrix equation.

Although we have not investigated the matter thoroughly, the results described above
indicate that the presence of the edge singularity does not appreciably affect the accuracy of
the method for interior points. Furthermore, if it is desired to obtain a more accurate value
for the points at the edges (ordinarily this is not of practical importance), the simple pro-
cedure outlined above is available.
CONCLUSIONS

We have shown that a method is available for designing coils that meet prescribed
homogeneity requirements and that minimize a particular figure of merit, the stored energy.
This permits us to make a rational choice between the infinite number of possible coils that
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will meet the homogeneity requirements if no constraints are applied. Interestingly, although
the solutions vary continuously with Z., they can be closely approximated by discrete uni-
form coils which have only slightly greater -values of stored energy and are much easier to
build. The method has been illustrated for two-dimensional windings on the surface of a
cylinder because of the great technical importance of this case. However, it is probable that
the method can be readily generalized to other geometries and to different figures of merit.
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Appendix I

TABULATION OF THE FUNCTIONS u, (Z)

g0 - 1

g, - 3Z

82 - (2Z- 1)(2Z+1)

93 - 2Z (4Z 2-3)

g4 - -- (8Z 4-12Z 2 + 1)
8

s - 21 Z (SZ4- 20Z 2+5)8

86 - 7 (64Z 6-240Z 4+ 120Z 2- 5)
16

97 - 9Z (64Z 6 - 336Z 4 + 280Z 2 - 35)16

8 - 45 (128Z' - 896Z 6+ 1120Z 4 -280Z2+.7)
12-8

9 55Z (128Z' - 1152Z 6+2016Z 4 840Z 2+63)

10 -3- (512Z,0_ 5760Z'. 13440Z 6 _ 840OZ 4+ 1260Z 2- 21)256

91 - 2239 (512Z' ° - 7040Z'+ 21120Z 6- 18480Z 4+4620Z 2- 231)256

1 - 91 (1024Z" 2- 16896Z'°+ 63360Z'- 73920Z'+ 27720Z 4- 2772Z 2 + 33)
1024

83 105Z (1024Z' 2 - 19968Z 1o+ 91520Z S- 137280Z6+ 72072Z 4_ 12012Z 2+ 429)
1 024
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Appendix 1 (Cont'd)

I5

4 (16384z14 - 372736Z' 2 + 2050048ZI°- 3843840Z'+ 2690688Z 6

- 672672Z 4 + 48048Z 2- 429)

95 - 17 (16384Z 4 - 430080Z 2+ 2795520Z 1- 6406400Z8+ 5765760Z6

- 2018016Z 4+ 240240Z'- 6435)

:16 - 153 (32768Z16 - 983040Z4+ 7454720Z' 2 - 20500480Z'O+ 23063040ZIgl-32768

- 10762752Z 6+ 1921920Z4- 102960Z 2+ 715)

171Z

-17 - 7 (32768ZI 6- 1114112Z14 + 9748480Z 12- 31682560Z' 0+ 43563520Z 8

- 26138112Z6+ 6534528Z 4 - 583440Z'+ 12155)

95 (131072Z"- 5013504ZI6+ 50135040Z"- 1 90095360Z"2 + 313657344ZIO
6553-6

- 235243008Z'+ 78414336Z 6- 10501920Z4+ 437580Z 2- 2431)

1 05Z (131072Z'- 5603328Z6+63504384Z 4- 277831680Z' 2+541771776Z o65536

- 496624128Z8+ 212838912Z 6- 39907296Z 4+ 2771340Z 2- 46189)

231
9- 262144 (262144Z 2 0- 12451840ZS+ 158760960Z6-793804800Z' 4+ 1805905920Z' 2

- 1986496512Z' o + 1064194560Z'- 266048640Z6+ 27713400Z 4

- 923780Z 2+ 4199) "

I.~. A-2
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Appendix 2

DERIVATION OF THE STORED ENERGY
AS A QUADRATIC INTEGRAL FORM

Equation 27 can be derived from Eq. 20 as follows.
W - ff dA " dA'

su/face IWE

, .,'- sin#. sin#'. + cos$o cos4', - cos(4'o - 40)

dA - a 2 d# dZ, dA'- a 2 d#'dZ',
I I
R - [2a 2 - 2a 2vos(4',,- 4.) + (z 0- z',)21

or,
I II

S' [2- 2cos(#'.- ,) + (Zo- Zo) 2]'A

i z2a z  r cos(O'o- *0 ) ',#(Zo) a*(Z',)
fi r (f [2 - 2cos(4',,- 0 ) + (Z'.- Z,,)2P' 71 a °d0dZ' dZ.

Let 1,- 2 cos('-0)
0 - 2 - 2cos(4'o-4o) + (Z',- Zo) 2J '

with #o, Zo, Z'o held constant, substitute 80, - 4'0- 0
2w-0. cos#", d#".

-, 12 - 2cos#",, + (Z,, Z,)2]'h

Let 0"o- 2* + v

d#"O- 2d#
cos#", - 2sin2#- 1

I1 =2f + 2i2-1)d
- 14 - 4sin* + (Z,,- Z')2 Jh

let k 2  4

4+ (Z,-Z'.)2

and note that, because sin2, is periodic with a period equal to W,
A+w .p12

f AWf(sin 2*) dO . 2J2 f(sin~o) d# d
A 0

and is independent of A for any function, f.

A-3
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k w (2sin 2#- 1)
I" kJ (1 - k2sin2*)A di

These integrals can be expressed in terms of K(k) and E(k), the complete elliptic in-
tegrals of the first and second kinds (Ref. 11, p. 162).

f/ (I- kin2 )) -I-L 1K(k) - E(k)

W/12I.I
'o ( 1 - dtP) -~ K(k)0(0- k sin2 '

Therefore,
.4) E(k)}

4 11k 2i

and

W f z. 11 - 2J K W - Ek W (Z,) (Z'0 )dodZ' dZ0 .

The integrand is independent of 0,, therefore,

W A. I 2 a 7f Z", lI - A~i XK)W - Ek) W (Z,,)oaZ',) dZ'0)dZ,._Z z.k 2

Define S by

S ff-Z. - 1- K(k) - ,(k)o(Zo)o(Z'o) dZ'odZo.

This yields,

W - j.&c 2a3S.

Using c ' and W- L12 we haveOW0  2
pt oN,2J2a __2____,

W Sand L - S.

From Eq. 14 we may also take c - yielding

42#r+3

Note that S is a quadratic integral form in the sense discussed by Courant and Hilbert
(Ref. 15, p. 122).
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ELEMENT TYPE COMPARISON IN BASIN OSCILLATION ANALYSIS

Mark D. Prater
U. S. Army Engineer Waterways Experiment Station

Vicksburg, Mississippi 39180

Keith W. Bedford
Department of Civil Engineering

The Ohio State University
Columbus, Ohio 43210

ABSTRACT. A comparison of finite element types in the solution of basin
oscillations is presented. A two-dimensional finite model is used to obtain a
harmonic solution to the linearized velocity potential formulation of the shallow
water wave equation. The influence of three types of elements, linear triangles
(LT), linear isoparametric quadrilaterals (LIQ), and quadratic isoparametric quad-
rilaterals (QIQ) on the computation of periods of oscillation and normalized dis-
placement fields of basins is tested.

A brief description of the solution technique is given along with the results
and conclusions of two model applications. The first employs a rectangular basin
with uniform depth and the second a natural basin, Lake Erie, with varied geometry
and bathymetry.

1. INTRODUCTION. Oscillations in enclosed basins are a phenomena which have
been studied for many years. Analytical solutions for the partial differential
equations which govern oscillatory behavior have been found for various mathemati-
cally defined basins. Numerical solutions have also been found by assuming that a
natural basin can be approximated in a one-dimensional form, or that the depth is
uniform throughout. Only since the late 1960's have approximate solutions been
sought in basins of arbitrary geometry and bathymetry. This paper presents a
simple, quick, and accurate method to determine periods of oscillations and nor-
malized displacement fields for completely arbitrary enclosed basins.

2. DEVELOPMENT OF FINITE ELEMENT EQUATIONS. The equation governing oscilla-
tory motion for a basin of arbitrary shape is

1 /2 (1)(9 at 2  Oxa=y a

where h is still-water depth and # is velocity potential. Assuming a harmonic

solution to remove time dependency, let

*(x,y,t) = *(x,y)e i~t

where w is the oscillation frequency.
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Substituting into Equation 1 gives

- !6 = L(h ') +L ( 1)(2)

or in vector notation

V • (hVm) = -A

where A = w2/g , which is the form for the eigenvalue problem. The equation es-
sentially states that []j{(} = -A{0} where [M] contains information about the
bathymetry and geometry of the basin. In solving this, the periods of oscillation

can be determined from the eigenvalue X by. 1/T = [3600(gX)1/2]/2n , and the cor-
1/2

responding displacement field from the eigenvector (01 by elevation C = *(X/g)

To discretize the equations over the domain of the problem, the finite element
method is used, primarily for the flexibility in fitting the elements to irregular
boundaries. The solution technique assumes that the unknown quantity 0 , can be
approximated by

_n
0=I N.0. = <N> [0

i= .

where 0i = value of the variable at node i

n = number of nodes per element
N. = value of the shape function at node i

Given a differential equation such that L(O) = 0 where L is a differential
operator, and substitute the approximate variable, yields L(j) = R 4 0 , where R
is a residual value or error between the true and approximate solutions. One pro-
cedure used to reduce R to a minimum is to set fAW iRdA = 0 where Wi is a

weighting function evaluated at point i . This relationship means that the resid-

ual value is zero when averaged over the domain of the problem. Substituting for R
gives fAWiL(i)dA = 0 , or substituting further fAWiL(<N> (01) dA = 0 . The Galer-
kin Method of determining the weighting functions assumes that Wi is equal to Ni
for all i . This gives the final formulation of LANiL(<N> (0)) dA= . A simi-

lar procedure is done with our governing equation.

Expanding Equation 2 so that

(h 2 82 + h 2_1 + "h X 3
h ax2 +ay 2  ax ax By ay

and multiply through by Ni and integrate over the domain gives

fJNi[h + ax ax ay dA = NiAodA (4)
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To simplify the above, the first terms are separated and integrated part by
part. Since

2h2_
Nih '_2 L ai (5)3x2 ax i ax - ax ax iaxax

integrating over the domain yields

h fNhdy- ff h dx dy - ffN a dx dy
Ni 8 x y Nhax Ox - ax (---)

ff 8x2 f

where C denotes integration along the boundary. Doing the same for the y-
direction terms and substituting back into Equation 4 gives

ffh(aN + O -a dx dy - Nih n dr = ffN X dx dy (7)
A \ ax- ax 3iT ay, i an A

where n is a direction normal, and r is a direction tangential to a boundary.
For an enclosed basin with solid boundaries, the term ao/an is zero. The above
then becomes

jf h 8--x-+- x) dx dy = jNik dx dy (8)

3. ELEMENT DEVELOPMENT. Two types of elements are used to discretize the equation
over the domain (Figure 1). The arbitrary shape of the element in the x-y global
plane is transformed into a square in the local t-n plane. Since the elements
cannot be integrated over analytically, the coordinate mapping is done for ease of
numerical integration. The two coordinate systems are related by

O N) ON.a(3.
i) Bx ax.

where 3 is the Jacobian matrix. Using the shape function, the directional vari-
ables can be approximated by

n n

x= N.x. andy = NiY i
i=l i=l1; !

iyi
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Therefore,

'[ 8(Nix i ) ID 3(Niy i )

(10)an J[EaNiXi) V'a(NiYi)

The global derivatives of the shape functions can be solved for, such that

8N. (ON.

= j-1 ./11)

The inverse of the Jacobian is easily found by Cramer's rule.

The shape function N. is defined as the function which is equal to one when
1

evaluated at node i and is equal to zero at all other nodes of the element. Shape
functions which satisfy this are

N. (1 + ti)(l + qi) , i 1,2,3,4

for the LIQ element and

N i  1 (1 + U( + nni)(U i + ni) , i = 1,3,5,7

N 1 (I - t2)(1 + rri) and i = 2,6

N= (1 + Ui)(1 - 2 = 4,8

for the QIQ element where t and r are directional variables and i and i .

are coordinate values at node i .

To complete the transformation of coordinate systems, the determinant of the
Jacobian matrix (det J) is defined as

dx dy = det J dt dn

This coordinate mapping makes the relation
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1 1

f f(x,y) dx dy f f f(,nq)det J dt dq (12)

possible. The right-hand side of Equation 12 can now be solved by numerical
integration.

The integration technique chosen in Gaussian Quadrature, sinc! a 2K-I degree
polynomial can be integrated exactly with only K points, thus reducing

computation.

Gaussian Quadrature assumes that

I I k k

f f f(t,n) dt dq = k W Wk i f(tinj)

-1 -1 i=1 j=1

where W. and W. are weighting factors at an integration point (ij) within the1 3
element. Positions of these integration points are found in Figure 2 and Table 1.

Returning to Equation 8, and assuming that

h = <N >[he} and = <N >{0e}ee e e

where the subscript e denotes values for a specific element, and applying Gaussian

Quadrature yields

i=1 j=1

8<NI k -I .8

e+ (1,2) ae + [J1(2,11) el

3(, el l <N > 3<N>1
+ J-I(2,2) -n J-(2,1) + J - (2,2) e iet{e } ,

= WiWj(Ne}<Ne > det J)j]X{el (13)
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In the above equation 4e is no longer of function of space and is removed

from the integration. Also, J I(1,1) represents the value at location (1,1) of
the inverted Jacobian matrix.

The equation can now be considered as

[Se]{ e} = X(R e] e

where S and R are n by n matrices and n is the number of nodes per ele-
ment. After assembling the element matrices over the entire domain,,the full equa-
tion becomes

[S]{¢ =

where S and R are m by m matrices, where m is the number of nodes in the
domain. Both S and R are symmetric, banded matrices, the bandwidth dependent
on how the nodes were numbered. The eigenvlaue solution scheme used here was dis-
cussed by Jennings, where iterations are carried out simultaneously with several
trial vectors. Once the dominant eigenvalue and eigenvector have been found, they
are removed from the set of trial vectors. This process of iteration and elimina-
tion is continued until all of the required values have been obtained.* This pro-
cess is quick and efficient when only a small number of the eigenvalues and vectors
are needed.

4. TEST BASIN RESULTS. To effectively test the solution procedure, the gov-
erning equations are solved analytically for a rectangular basin with uniform ba-
thymetry. The numerical solution is then calculated for the LIQ and QIQ element
representations and compared to the analytical results to determine the correctness
of the periods and displacement fields.

The analytical solution for the eigenvalues of the governing equation is given
by Lamb as

+ n m = 0,1,2,...
n = 0,1,2,...

where a and b are the x and y dimensions of a unit depth rectangle, and m
and n are the modes of oscillation in each directions. Values of i'X are given
in Table 2 for a basin of size 1.00 by 1.01 feet.

A previous study by Valizadeh-Alavi used a grid of 200 equally sized linear
triangles (LT), shown in Figure 3. As compared in Table 2, the roots of the eigen-
values from the LT elements differ slightly from the analytical results, the error
ranging up to over 4 percent. A study of the generated displacement fields show
that for oscillations in one direction the LT elements give good results. However,
for two dimension oscillations, tLe displacement fields are greatly distorted.
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The first test of the new procedure used the LIQ element. The representation
used in this trial was 100 rectangular elements, each one having the area of two
triangular elements. Again, from Table 2 the eigenvalues differ slightly from the
analytical values, not as much of the LT elements did, but by the same magnitude of
error. Yet, the displacements given by these elements are identical with what is
expected from theory. No distortion is noticeable.

The final element tested was the QIQ element. The test basin was divided into
25 elements, each one having the same area as four LIQ or eight LT elements. This
procedure showed considerable reduction of the error between the numerical and
analytical results, with the first eight eigenvalues having percentage errors of

less than two tenths of one percent. The displacement fields had no noticeable
distortion.

The test basin results show that for solving for eigenvalues, the QIQ repre-
sentation is far better with much fewer elements.

The LIQ and QIQ elements do equally well for determining displacement fields.
The LT element, for this study, is not a reliable method to use in solving
displacements.

The QIQ test case was run on a Cray-i, using about 10,000 words of array stor-
age and taking one second of computation time.

5. APPLICATION OF MODEL TO LAKE ERIE. Lake Erie is the shallowest of the
Great Lakes, with an average depth of 60 feet. The lake can be divided into three
basins (Figure 7) by reason of geometry and bathymetry. The entire lake is
240 miles long with an average width of 40 miles. The longitudinal axis of the
lake is roughly 23 degrees north of east.

Lake Erie, being a basin of varied geometry and bathymetry, does not have
analytical solutions for its periods of oscillation. However, spectral analysis of
hourly water levels from selected NOAA gages around the lake gives a good indica-
tion of how the lake oscillates. For this study, 18 sets of approximately 15-day
strings of hourly water levels from Toledo, Marblehead, and Cleveland, Ohio; Erie
Pennsylvania; and Buffalo, New York, were analyzed with a resolution of 100 lags
and then ensemble averaging by station. Results of this procedure, when the mean
lake level was 572.3 feet IGLD (International Great Lakes Datum), are shown in
Table 10 along with the results of an earlier study by Platzman and Rao.

Two finite element representations of Lake Erie are used. First the lake is
segmented into 92 QIQ elements having a total of 337 nodal points. Next a grid of
368 LIQ elements with 429 nodal points is generated by dividing each QIQ element
into fourths. The element representations were done with the major concerns being
to adequately resolve the shape of the lake and to increase the density of elements
as the bathymetry becomes more varied.

Water depths were digitized at a mear_,level of 571.0 feet IGLD from the
Canadian Hydrographic Service Bathymetric Chart of Lake Erie No. 882 (1971).
Changes in the water level from the mean are accounted for by adding or subtracting
the difference form the mean at all the nodal points except those along the shore,
which are taken to be zero depth at all times.
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Results from both element types are shown in Table 3. All the periods com-

puted by the LIQ representation overestimate the averaged lake spectra periods by

3 to 9 percent. Better agreet~ent is reached with the QIQ approach, with errors

ranging from -2 to 4 percent difference for the first nine modes of oscillation.

An examination of the results shows that several periods computed spectrally

do not appear in the model results, while some modes predicted by the model do not

show up at all the stations. The 7.7-hour period at Marblehead and the 4.0-hour

period at Cleveland are due to the failure of ensemble averaging to suppress all of

the moise found in the individual spectra. Both modes were found to have very low

energy. The 5.13-hour modes at Toledo and Erie and the 5.00-hour mode at Cleveland

may be due to a combined central and western basin oscillation. The failure of the

9.1-hour mode to appear at Marblehead and Eric can be explained by referring to the

displacement plot of Lake Erie's second mode, Figure 11. A nodal line appears at

the American shore at Marblehead and near Erie. This is a line of zero oscillation,

thus damping out this mode in the spectral results. The 20- to 25-hour mode found

at all of the stations is due to tidal effects and is not a free basin oscillation.

Displacement fields from both elements are very similar, with the first five

modes all longitudinal oscillations, while the sixth is transverse in nature.

The QIQ representative of Lake Erie required around 40,000 words of array

space and took six seconds of execution time on a Cray-1.

. 6. CONCLUSIONS. A simple, quick, and accurate method for determining the pe-

riods of oscillation and relative displacement fields for basins of arbitrary shape

and bathymetry has been presented. Comparisons among three types of elements, the

LT, LIQ, and QIQ, on a test basin and of two of those elements, the LIQ and QIQ, on

Lake Erie show the QIQ element to be superior in representing the domain. Agreement

between analytical or statistical and numerical results from a QIQ element represen-

tation was shown to be very good. If further work is to be done with this approach,

areas of research might include the addition of Coriolis, friction, and nonlinear
terms to the equations of motion, along with a suitable boundary condition for
forcing oscillations.
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Figure 2. Locations of Gaussian Quadrature Points for

Integrating the LIQ and QIQ Elements

Number of
Integration Degree of Weighting
Points Polynomial Coordinate Location Factor

1 I = 0.0 w =2.0

2 3 1 - 0.5773503... w = 00
x2 = 0.5773503... W2  JO

3 5 = - 0.7745967... w, = 0.5555...
x2 = 0.0 W2 - 0.8888... -
x3 = 0.7745967... W3 = 0.5555...

Table 1. Coefficients of Gaussian Quadrature
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Mode (m, n) Analytical LT LIQ QIQ
Number Error Error Error

1 (0,1) 3.110 3.121 0.35 3.121 0.35 3.111 0.03

2 (1,0) 3.142 3.152 0.31 3.152 0.31 3.142 0.00

3 (1,1) 4.421 4.471 1.13 4.437 0.36 4.421 0.00

4 (0,2) 6.221 6.320 1.59 6.322 1.62 6.231 0.16

5 (2,0) 6.283 6.384 1.61 6.385 1.62 6.293 0.16

6 (1,2) 6.969 7.126 2.25 7.065 1.38 6.979 0.15

7 (2.1) 7.011 7.222 3.01 7.108 1.38 7.020 0.13

8 (2,2) 8.842 9.246 4.57 8.986 1.63 8.859 0.19

9 (0.3) 9.331 9.671 3.64 9.677 3.71 9.401 0.75

10 (3,0) 9.425 9.767 3.64 9.774 3.71 9.495 0.75

Table 2. Comparison of Analytical and Numerical Results for
A 1.00 X Foot Test Basin

Mode Platzman Toledo Marble Cleve. Erie Buffalo Average LIQ %E QIQ %E
569.9 excluding

Platzman

25.0 25.0 25.0 22.0 25.0

1 14.35 14.3 14.3 14.3 14.3 14.3 14.3 14.80 3.5 14.25 -0.3

2 9.14 9.1 - 9.1 - 9.5 9.2 9.50 3.3 9.09 -1.2

7.7 - - -

3 5.93 5.88 5.70 5.88 5.41 5.88 5.75 6.25 8.9 6.00 4.3

5.13 - 5.00 5.13
4.15 4.08 4.17 4.25 4.08 4.08 4.13 4.44 7.5 4.25 2.9

5 - 4.00 5.1

5 3.64 3.85 3.64 3.70 3.77 3.72 3.86 3.8 3.70 -0.5

6 3.39 3.51 - - - 3.45 3.59 4.1 3.41 -1.2

7 3.33 3.33 3.28 - 3.31 3.40 2.7 3.24 -2.1
8 3.23 3.23 3.13 - 3.13 3.18 3.32 4.4 3.17 -0.3
9 2.99 3.03 3.03 3.03 - 3.02 3.18 5.3 3.04 0.7

Table 3. Comparison of Spectra and Model Results at 572.3 Feet IGLD
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Figure 10. First Three Modes of Lake Erie Using QIQ Elements
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A TSUNAMI GENERATION AND PROPAGATION MODEL
DRIVEN BY VERTICAL SEABED MOVEMENTS

Jeff Earickson
U. S. Army Engineer Waterways Experiment Station

Vicksburg, Mississippi 39180

Abstract. The generation and propagation of tsunamis by vertical
motions of an impermeable seabed is examined in one dimension. Perturba-
tion techniques are used to solve the general equations of fluid motion,
and the resulting two nonlinear differential equations describe the
effects of seabed motion on the fluid. Near- and far-field wave forms
are computed from a finite-difference approximation (FDA) of the differ-
ential eq,.ations to show possible generation and propagation modes of
tsunamis.

The FDA is verified by examining the problems of a solitary wave
moving in a uniform depth of fluid, and a solitary wave shoaling upon
a plane beach. The computations are shown to agree with analytic solu-
tions and the experiments of others. Results from the numerical model
are compared with J. L. Hammack's experiments (1972) with a long wave
tank containing a movable bottom section at one end. This comparison
shows that the FDA gives uniformly valid results in both the generation
region and in the far field.

Introduction. Methods of modeling a tsunami's generation and
propagation characteristics have been attempted since the beginning of
this century. Due to the repeated destruction of their coastlines by
tsunamis, the Japanese proposed some of the earliest generation models.
Sano and Hasegawa C1915) studied the simple problem of an instantaneous
point disturbance in a three-dimensional fluid of uniform depth, and they
used linear wave theory to predict distant wave forms. Syono (1936) con-
sidered a finite bottom disturbance in a cylindrical coordinate system.
By assuming idealized bottom movement functions, he could predict free-
surface wave forms to a limited extent.

The invention of the digital computer, and the 1960 Chilean and
1964 Alaskan earthquakes, induced researchers to develop more sophisti-
cated models. These two earthquakes produced significant tsunamis
throughout the Pacific Ocean, giving scientists the first good field data
on wave forms and bottom topography changes. L. S. Hwang, David Divoky,
and H. L. Butler-used two-dimensional finite-difference models of the
Pacific Ocean basin to simulate the Alaskan earthquake. In a series of
papers (1970, 1972, 1975), they modeled the generation region of the
quake with Cartesian coordinates, and the far-field regions with spheri-
cal coordinates. The generation model used observed bathymetry changes
in the Gulf of Alaska to approximate the disturbance area. Rates of
movement were inferred from seismic records. The wave forms created in
the generation region model were then used as input to the transoceanic
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propagation model. The far-field actions of the wave could then be ob-
served, and the results of the work indicate that the form of a tsunami
in the far field is largely independent of the generation mechanism.
Their models cannot simulate a tsunami over the generation, transition,
and far-field regions without approximate matching methods between dif-
ferent models. Their results also do not address higher order disper-
sive effects.

J. L. Hammack (1972) studied tsunami generation and propagation
mechanisms both cheoretically and experimentally. He derived an analytic
solution for seabed generated waves by using linear approximations LU
the incompressible, inviscid equations of motion. His solution is only
valid in the wave generation regioL where .nonli ear effects can be con-
sidered negligible over certain ranges of bed motion parameters, such as
the maximum bottom displacement and the rate of motion. Hammack notes
that the wave's nonlinearities grow until the ratio of nonlinear to
linear effects approaches unity. This ratio, known as the Ursell (1953)
number, defines the far-field or the propagation region. Korteweg and
de Vries (1895) derived an equation for this type of wave motion, and
Hammack uses solutions to the KdV equation to predict tsunami propaga-
tion modes. His analytic solutions indicate that for any initial wave
profile whose net volume is finite and positive, a train of solitary
waves (first described by Boussinesq 1872) will evolve in the far field.
Hammack's analytical method involves asymptotic matching from the linear
theory to the KdV equation, and he notes the method's failure to explain
the wave's transition region.

lammack also performed .xperinenLal work on wave generaLion and
propagation with a long narrow wave Lank. One end of the tank contained
a movable block in the bottom, which could be upthrust or downthrown by
a servomotor. The motor could be programmed, and Hammack studied two
types of block movement. The first was exponential, where the bottom
displacement is given by:

4(x,t) = ( - e-t )H(b2 - x2) , t > 0 ()

The constant 4 is the maximum (asymptotic) block displacement, H is
the Heaviside function, b is the length of the block, and a deter-
mines the rate of block motion. For this function, the quantity (1/Q)
known as the characteristic time tc , is the time required for the
motion to be two-thirds complete. The second type of block motion was
transcendental: -

4(x,t) = o[1/2(1 - cos wt/T)H(T - t)

+ H(t - T)]H(b2 - x2) , t > 0 (2)

For this case, all of the motion is completed in time T . Hammack
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recorded wave profiles generated by these two types of block motion along

the length of the wave tank. He studied the characteristics of the waves

for different rates of motion, different block lengths, and different
total displacements, and he compared his data with his analytic work.
The results of his experimental work are used in the present study to

verify the numerical calculations and to show how the nonlinear equations

presented below give uniformly valid results in both the near and far
fields.

Problem Formulation. Recently, researchers such as Hwang and
Divoky (1970) have initiated the study of tsunami generation and prupa-
gation over uneven sea bottoms with nonlinear theory. However, this
work has mostly used Airy theory, and dispersive effects have been
ignored. In the related problem of wave generation due to ground move-
ment, nonlinearities have been avoided and work has centered on either
constant depth situations (Braddock et al. 1973) or constant slope
beaches (Tuck and Hwang 1972). In the following section, the governing

equations for long waves generated by ground motion are derived to in-

clude effects of dispersion and higher order nonlinearities.

Figure 1 shows an incompressible, inviscid, and irrotational fluid

in a constant gravitational field, bounded by a free surface and an im-
permeable bottom which may change in space and time. Cartesian coordi-
nates are fixed on the quiescent free surface defined by z = 0 , where
z is positive upwards. Laplace's equation governs the fluid motion.
If a typical vertical length scale h* and a typical horizontal length
scale L* are chosen for the fluid domain, a nondimensional length
parameter e - h*/L* can be defined. For long-wave problems, e is
assumed to be small. by scaling all of the problem variables to the
horizontal length scale L* , the governing equation can be written in
nondimensional form as:

2 + 32 ( 0  -h z 7 (3)

ax2  ay2  az2

The free surface kinematic boundary condition can be expressed as:

a- n + aan + -= z n(x,y,t) (4)
at ax ax By ay az (

The bottom kinematic boundary condition is:

h €ah a8h a. -
'+ -L 2-h + - y + -Lo = 0 , z - -h(x,y,t) (5)

The free-surface dynamic boundary condition contains the parameter c
in nondimensional form:

-+ (V3 .V 3 ) +-0 , z - n(x,y,t) (6)
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For long waves, and moderate variations in the bottom profile, the
following perturbation solutions can be sought to elinate the verti-
cal dependency in the velocity potential:

((x,y,z,t) - (z + h)no(a (x,y,t) (7)

n-O

This method of perturbution solution was first introduced by Lin and
Clark (1959). By substituting the expansion series into Laplace's
Equation 3 the following recursive relation in #(n) can be found;

,(n+2) V 2 O(n) + 2(n + l)Vh.V,(n+l) + (n + 1)V 2 h 4(n+l)

(n + l)(n + 2)[(Vh) + 1]

Substitution of the series into Equution 5 yields the starting term in
the recursive relation:

(1) - - [ah/at + Yh.VO(0 )] (9)

[(Vh) + ii

Following Lin and Clark's argument, the linear terms in Equations 4
and 6 should be comparable in magnitude in order to obtain nontrivial
results. Assumptions can be made for the orders of magnitude of the
various +(n) in terms of the powers of e to satisfy the requirements
of long-wave theory and to make the rate of free-surface movement com-
parable to the rate of bottom motion.

By substituting the perturbation series into Xquation 4, and by
negiecting terms beyond 0(c5 ) , one obtains:

an + Vn.V*(0) . *(1) + 2(n + h)+(2 ) + 3h2# (3 ) + 4h3* ( 4) + O( 6  (10)

Likewise, by substituting the series into Equation 6 and collecting ters

to 0(C5 ) yields:

1(0h~±~~+ 2 a#(Z5
-- +-at + +h----+ + h2 .O() (11)

One can use the recursive relations (Equations 8 and 9) to express
,(l) I(2) , 0(3) , and 4(I)  in terms of #(0) , so that Equations 10

and 11 can be expressed entirely In terms of the free-surface profile
n and the depth-averaged horizontal water velocities. Denoting that:

- V*(0) - (uv) (12)
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gives Equations 10 and 11 as:

h3
Vn + v['(n + h)] - h .(V2') = .u + B)-'

32 2 6 (13)

+ 3 h 2VhV2u 
+ C + O(

6 )

2

and

Du ~ ~ ~ ~ 4 + -, -- , jV2D
+ uVut V(hVh) + 2hVh + D + (c (14)

Tt£ 12 t t +  Ot

where

4. -*h 2 12 2 V2
A 7hVh + - h V(V h) + 3hV hVh (15)

2

B -. (h2Vh) (16)

C = 1 h[2 + hV2h - 2Vh.M(V 2 h) - 1 h

h2 (17)
+ 2hVh-V(Bh/at) - (Dh/Ot)

D -- h Vh + (18)at2  (tV2

The terms C and D are zero for an immovable bottom, and the one-
dimensional version of this case yields the equations derived by Mei
and LeMehaute (1966). Furthermore, for a horizontal fixed bottom, the
right sides of Equations 13 and 14 are zero, yielding the case studied
by Lin and Clark (1959).

In a one-dimensional Cartesian system, Equations 13 through 18
reduce to:

h3 3  2a a au 3 h h 2u
-+ a h3 +)u Au + B-+ -h2 2+ C (19)at x[u(n+h)] 6 x3 x 2 ax x

and

2 32aua au h a3 u a ihi) u aii( h x h x a2u + D (20)
at ax c ax 2 ax axat
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where

A+ -h h2  3h 2  hh(21)A V -x! 2 ax 3  2ax2 (x

B = ( ~h~2 (22)
2 1] h2 axh 2) (

2h[_h 2 a 2 2 3
1h h 3h ah3h ah a2h h (23)

- -ax + h - 2 L + 2h -Lx-xjt(3
ax2 a x3 ax axt ax 2at

D ----h  _-- 3 h  (24)at 2 3x axat 2

The Finite-Difference Approximation (FDA). The approximation to
Equations 19 and 20, as well as the computational method used here, fol-
lows the scheme developed by D. H. Peregrine (1967) for a somewhat
simpler set of equations. Peregrine addresses the problem of long waves
shoaling on a plane beach where no bottom motion occurs. His solution
scheme uses forward time differences for the continuity equation and
backward time differences for the momentum equation. Both central and
Crank-Nicholson spatial differences are employed. His computational
method calculates a provisional free-surface profile at the advanced
time level with the continuity approximation (which is explicit in q.
The provisional n is then used to calculate the horizpntal water veloc-
ities at the advanced time level. The water velocities are then averaged
over the present and advanced time levels, and this information is used
to calculate the final wave profile at the advanced time level. Then
the time-step advances, and the process repeats. Peregrine had shown
the stability and accuracy of this method in an earlier paper (1966) by
simulating the movement of a solitary wave along a constant depth channel
and noting the wAve's degradation due to numerical error.

When Peregrine's method of finite-differencing is applied to the
continuity Equation 19, one obtains:
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n(i,j + 1) -n(i,J) +-At (-i( hV~ + 2,J) + B
12(x/) u({ 2Ax

2 3T

En ~ ~ ~ 4 3(h ( hhl 
1(h+\J)+A T

2X Ix x ) '\ C 25

- - [i + I,) 'D ( 11j)] AU(i,i) (5

+ lr ji) + h) + -1

+. ( I \2/h (i - ,j)

+ .2(h3ui- 2,j] +

The momentum equation (20) becomes:

U~ij) Mi~j)l ~i+ 1,j + 1) + N(i,j)u(i,j + 1)

+ [P(ij) i ~9]U~ - 1,j + 1)

[ - 4Ax ju(i + 1,J) + N(i,j)u(ij) + 1 P(i,j) (26)

+ i u~i- 1.,J) + D

+ [n(i -1,j + 1) - ,n(i +1,1 + 1) + n(i - 1,J) - r(i +1,j)]
4eAx

where

MWij) - -l [i x (ax) At (27)
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r~~j + -A2  2 Ia2h\ l+ ) - h a (28)

h h) h 2
P(ij) a - (29)

Here, i denotes the location of the space gridpoint, while j denotes
the time level. The variables A , B , C , D , and h are always
evaluated at (i,j) , and from a programming standpoint they can be
viewed as "constants." In FORTRAN code, these five variables can be
represented as FUNCTION subprograms to simplify program writing. Equa-
tion 25 is explicit in n , while the form of Equation 26 yields a
tridiagonal matrix for the advanced time level of u

Results. After Equations 25 through 29 were coded into FORTRAN,
the stability and accuracy of the FDA was tested with two simple bottom
profiles. The movement of a solitary wave over a region of uniform depth
was studied, since an analytic solution to this case is known. The case
of a solitary wave shoaling upon a plane beach was also examined and
computations were compared with the work of others. No bottom motion
was considered in either test.

Laitone (1963) has shown that the solitary wave solution of
Boussinesq (1872) is an approximate solution to higher order long-wave
theories, and it is known that a solitary wave is a limiting case to
cnoidal wave solutions. This wave, also called a soliton, retains a
permanant shape in a Lagrangion coordinate system. In nondimensional
form the free-surface profile of a soliton can be expressed as:

n(x,t) - H sech2 [ _-(x - ct)] (30)

where H is the wave amplitude and C is the wave speed, given as:

C =(1v+ (31)

The depth-averaged horizontal water velocity is

u(xt) - C+n(x,t) (32)

These equations were put into the computer code as initial conditions,
and the amount of wave degradation over time was noted for changes in
the FDA's spatial resolution and time-step.

Two points must be noted about the use of a soliton in the
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calculation scheme. Due to the infinite wavelength of a soliton and the
uniform depth in this-problem, no horizontal length scale L* exists.
The use of the parameter c in Equations 30 through 32 must be ex-
plained for the solitary wave problem. Following Peregrine's scaling
methods (1966), the dimensional form of Equations 19 and 20 can be
scaled in terms of the constant depth. For the case of a uniform depth,
it can be shown that this scaling gives Equations 19 and 20 when c
equals one. The infinite wavelength of Equation 30 must also be made
to.. fit into a computational grid of finite length. Madsen and Mei's
work (1969) suggests setting the free-surface elevation to zero when
it falls below some small fraction of the wave amplitude II . The ap-
proach, in effect, chops off the leading and trailing edges of the wave.
The mass and momentum lost by this approximation ,cegrades the solution,
however, and the discontinuities at the *nds" of the wave emit noise
spikes of 2Ax width. The ratio of the cutoff height to the wave
amplitude plays as important a part in the stability tests as the
spatial resolution and time-step. Madsen and Mei use a cutoff ratio of
0.001 for their computations, a ratio which gives satisfactory results
for the present computational scheme, but smaller ratios give even
better results.

Figure 2 illustrates the accuracy of the computational method for
a small cutoff ratio c and moderate values of Ax and At . This
calculation advances 1000 time-steps with a minimum of numerical degrada-
tion. A series of computations with a constant cutoff ratio confirmed
Peregrine's (1966) claim that the computational method remains stable
and accurate for At/Ax ratios up to one.

Figures 3 and 4 il~ustrate the FDA's ability to model wave shoal-
ing upon a plane beach. Figure 3 shows a time series of free-surface
profiles for a shoaling wave. Both Peregrine (1967) and Madsen and Mei
(1969) perform calculations for a soliton shoaling on a plane beach,
and their results are compared with the present computations in Figure 4.
While the changes in wave amplitude over depth agree for the three
computations, some differences exist in initial and boundary conditions.
Madsen and Mei use the bottom profile illustrated in Figure 3, but their
initial condition places the leading edge of the soliton over the toe
of the beach. Peregrine does not use a uniform depth region to begin
his computation but places his initial wave over the beach slope. He
then scales his problem according to the depth beneath the initial wave,
so that e - 1 at zero time. In the present computations, the wave
starts entirely in a uniform depth region. These differences in initial
conditions explain the variations in shoaling rate at the toe of the
beach in Figure 4.

For the simulation of Hammack's wave tank experiments with the FDA,
the bottom motion functions (Equations 1 and 2) are nondimensionalized
with the block length b as the horizontal length scale. In this form,
the block length becomes one, and the parameter c expresses the ratio
of the water depth to the block length. Hamack studied the waves
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resulting from three rates of block motion which he termed "impulsive,"
"transitional," and "creeping" motion. Impulsive motion occurs when the
block rises rapidly enough to cause the fluid above it to rise as a
solid body during the block motion. Creeping motion allows the dis-
placed fluid to flow off of the block during the time of motion, while
transitional motion lies between these extremes. The use of the FDA in
simulating Hammack's results is constrained by the condition that
E < 1 . Hammack performed all three rates of motion for Equation 1
with a small E while only the impulsive rate experiment for Equation 2
used a small c . These four cases are simulated with the FDA, and the
calculations are compared with the experimental results in the genera-
tion region. For these four calLulations, a Ax. of 0.02 is used, which

models the block in 50 space steps. This meshwidth proves to give a
fine numerical resolution at a reasonable computer cost.

The simulation of Hammack's experiments requires the use of the
bottom motion functions (Equations 1 and 2) in the computer code, as
well as higher derivitives in space and time. The depth functions and
its derivitives appear in Equations 19 through 24 and appear in the
computer code as FUNCTION subprograms. Due to the Heaviside functions
in Equations 1 and 2 (or due to the leading vertical edge of the block,
from a physical point of view) many of the bottom function derivitives
cannot be evaluated at x = 1 . This difficulty required the placement
of an internal boundary condition into the code to evaluate n and u
at this point. Initial simplistic attempts to evaluate this boundary
condition by setting the higher derivitives to zero caused a numerical
"smearing" at the discontinuity, which generated numerical noise. The
internal boundary condition problem w's finally resolved by considering
mass and momentum conservation in a _Ax region about the edge point.
Values for n and u at x = 1 were derived from information at the
nearest meshpoints by using conservation principles. When this internal
boundary conc;.iion was used, the numerical noise ceased.

Figures 5, 6, and 7 illustrate the agreement between the computa-
tions and Hammack's results in the generation region for the three rates
of experia'ntal block upthrust. The figures show the change in the free
surface over time at the block edge abutting the end of-the wave tank
(x - 0) and at the leading edge (x - 1) . The largest differences in
results appear in the impulsive motion, which can be considered the
worst case numerically. Figures 8, 9, and 10 present time series of the
wave shapes from tiie three rates of bottom motion. In the impulsive

case, the body of water displaced by the block begins to break into a
propagating wavetrain fairly close to the block, while the wave from
the creeping motion appears as an undular bore in the generation region.
Peregrine (1966) shows how an undular bore forms into a solitary wave

train as it propagates.

Figures 11 and 12 show otion histories and a time series of wave
profiles for impulsive motion with Equation 2. As with the case of
Figure 5, Figure 11 illustrates that the water above the block moves as
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Hamm~ack's Experiments: - -

Numerical Results:
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Hammack's Experiments:- -

Numerical Results:
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Hammack's Experiments: - -

Calculated Results:

X:0

0. 12

0

2 4 6 8 10 12 1~4

-0.04 t

0.1C8

0
2 4 6 8 10 12 14

-0.04 t

Figure 7
Free-Surface Fluctuations at x:0 and x:1 vs. Time;:
Numerical Calculations vs. Hammack's Data, for a

Creeping Exponential Block Upthrust
at 0. 01 O .0246
Axz0. 1 00.1275

c 0 .0820 t C 8.70

445



-d .0 J1 w &;ii i _

~CIA

0 I

= 0'.%0

(N&A i If I

. -00 C.;

0 w
Q)

uli .~4 .. a
*\ a0 -4

00 0-

C--4

~ UN

446



00

00

- C
z m

0. 00

4. M of

*~0 w0C
LA V -4N*"4o

TN. ~ VI

,-LA ~

cc~

447U



IL

t T~~j~Ul -0Ti ,N t.-

0

4S. C

049 " 4

0 

b . w o

0.00o

ii

4.4 41

I- '

cS.

a-



Hammack's Experiments:

tumerical Results:
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Figure 11
Free-Surface Fluctuations at x=O and x=1 vs. Time:
Numerical Calculations vs. Hammack's Data, for an

Impulsive Half-Sine Elock Upthrust
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a solid body at the beginning of motion. The calculated curve at x - 0
attains a height of n/o - 1 , where C is the maximum block displace-
ment. Hammack's results indicate an even higher elevation at the center
of the block, which is not physically possible from momentum considera-
tions. Hammack notes that his high values are caused by air entrainment
into the water from a faulty seal at the edge of the block. Figure 12
illustrates how the displaced water mass begins to form an undulating
wave train as it moves away from the block.

The FDA's ability to model both the wave generation near the block,
and its propagation into the far field where nonlinear behavior pre-
dominates, is illustrated in Figures 13 through 15. While the generation
region calculations of figures 5 through 12 use a meshwidth of AX = 0.02
computer costs require a Ax of 0.1 for' the calculations in Figures 13
through 15. This increase in step size is due to the large propagation
distances and wave travel times needed to model far-field propagation.
This coarse step size causes the periodic oscillations at x - 0 and
x = 1 in the numerical results. As the wave moves into the propagation
region, however, its shape agrees with Hammack's measurements. The
calculations at x - 2.64 match closely, and a solitary wave train
evolves in the far field (Figure 14).

A comparison of computational and experimental results in the far
field shows an increasing divergence in wave speeds and amplitudes.
By x - 33.8 , the leading computed soliton stands approximately 40 per-
cent taller than its physical counterpart, and in accordance with the
Boussinesq celerity Equation 31 the numerical waves outrun the experi-
mental results. These differences in wave height can be attributed to
viscous energy dissipation along the tank walls and at the free surface.
Hammack cites the study by Keulegan (1948) in his analysis of wave decay
along the length of the tank. Keulegan derives a formula for determining
the downstream height of a solitary wave in terms of its initial height,
the water depth, the tank width, and the kinematic viscosity of the
fluid. Hammack applies this formula to his experimental data to show
that the decay rates of his waves fall within the 40 percent amplitude
decay range predicted by Keulegan.

Figure 15 shows a time series of wave profiles for this calcula-
tion. The formation of a solitary wave train from the initial displaced
water mass is illustrated, and this figure shows how the wave train
breaks into isolated solitons in the far field.

Conclusions. The comparison of calculated wave forms from the
FDA to Hammack's experimental results shows that Equations 19 through 24
can be used to estimate wave disturbances from seabed motions in both
the generation region and in the far field. The finite-difference
approximation has been shown to be stable and accurate for long-wave
problems. The FDA can be employed with a variety of bottom motion func-
tions to estimate tsunami forms in one dimension. The general form of
Equations 13 through 18 can be employed to formulate more general two-
dimensional bottom disturbance models.
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Hammack's Experiments:
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Hammack's ExperLments:

Numerical Results:
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THEORY AND CALCULATION OF THE NON-LINEAR ENERGY
TRANSFER BETWEEN SEA WAVES IN DEEP WATER

Barbara A. Tracy
U.S. Army Engineer Waterways Experiment Station

Vicksburg, Mississippi 39180

Donald T. Resio*
Oceanweather, Inc.

Vicksburg, Mississippi 39180

ABSTRACT. Non-linear coupling between sea waves results when the continu-
ity equation is scIved using a free surface for boundary conditions. Hasselmann
was able to provide a solution to these equations by a perturbation of the linear
solution since the non-linear coupling is weak. Hasselmann assumed a Gaussian
sea and set up a solution which could be analyzed by looking at the Boltzmann

integral for An. . This paper uses Webb's technique to solve the energy transfer
dt

Boltzmann integrals and discusses how this integration process has been made
simpler and more efficient by the utilization of a geometrically-spaced polar
grid over the spectral region. This grid allows the loci and the coefficients
inside the integrand to scale by various multiples of the geometric scaling
factor. Numerical results for the non-linear energy transfer are given for
various spectra.

1. INTRODUCTION. The linear processes that produce waves in the ocean

are fairly well understood, but the non-linear effects such as wave breaking
and non-linear interactions are just beginning to be studied. The sea wave

spectrum consists of a peak before a low wavenumber cutoff, and the JONSWAP
investigators in the North Sea showed that this peak shifts to a lower wave-
number cutoff as rime increases. The non-linear wave-wave interaction could
be an explanation for this peak shift. The non-linear interactions transfer
energy to different parts of the spectrum and help the sea go back to an
equilibrium condition after the wind has added energy to the sea. An evalua-
tion of this non-linear energy transfer is valuable for studies of ocean waves.

2. STATEMENT OF PROBLEM. In order to formulate the problem of the non-
linear transfer in physical terms, HaSselmann (1962) treated-the waves like
particles where each wave reacted like a packet of momentum. He treated the
waves in a set of four waves where there were three active participants and
one passive participant. The energy transfer problem can then be treated i
like a coupled mechanical system and can be solved by a perturbation of the
linear solution since the non-linear couplings are weak. The evaluation of
the non-linear transfer term is done statistically considering that the sea
is Gaussian. The process is very similar to the particle scattering problem.
This paper takes Hasselmann's theory and Webb's (1978) technique of evaluating
the non-linear energy transfer integral and describes how a specialized polar
grid with equal angle increments and radials spaced by a geometric progression

will simplify evaluation of the integral in terms of computer time and provide

physical inqight into the interaction process.

* Formerly with U. S. Army Engineer Waterways Experiment Station, Vicksburg,

Mississippi 39180.
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3. THEORY. The theory is based on a fifth order perturbation of the
series solutions for the velocity potential and the surface deviation using
the non-linear system of equations for the irrotational motion of a hori-zontally unbounded ideal fluid with finite constant depth and a free surface.

Using this method of solution, Hasselmann has written an integral expression
for the time rate of change of action density:

dn1

dt fff d 4 dk2 dk3 C(tI' t 2 9 t3' t4) 6(t1+k2 3 -k4) 6(w1+W2 -W3- 4 ) 

by (nln3(n4-n2) + n2n4(n3-nI).

Thi integral contains a coupling or interaction coefficient, a density expres-sion and two delta functions - one for conservation of momentum and one for

conservation of energy. The set of four waves being considered each have wave-
number, kll and angular momentum, wi Webb (1978) has evaluated this integral

by considering the integrand coefficients as a transfer function which evaluates
the rate wavenumber k is scattered into k The evaluation of the delta func-

3 V 4.
tions results in a wavenumber configuration, k-+k 2  k4, and an expression

for the angular velocities, w1=2-W3 - W49 which reflects the conservation of

tnegy condition. The integr l cin je evaluated by considering a specific
k3-k 1interaction defined by - k 3-kI . In a k1, k29 k3 co-ordinate system

one specific intersection of k3 and kI will result in a whole line of applicabie

k -values that will satisfy the energy conservation conditions. We know that
w 2 1/2 in deep water so we can write the energy conservation condition in terms
of the constant values for k and k3 and can solve the expression analytically
for the k2-values. These k2-values will be in the form of an egg-shaped locus
in a cartesian k2-space. By writing the energy conservation condition as a
function of k2, we can evaluate the integral in the co-ordinate system normal
and tangential to the locus and integrate around the closed curve of the locus.
The change of co-ordinate systems contributes a gradient of the argument of the
energy conservation condition to the integral. Evaluation oL the integral nowentails evaluation of each possible locus for each possible kl-k3 combination
and evaluation of the factors of the integrand at each of these interaction

conditions. These integrand factors include the coupling coefficient, the
density function and the gradient of the locus function.

4. EVALUATION OF THE INTEGRAL USING A SPECIALIZED GRID. Normally, eval-
uation of the integral would proceed by considering a regularly spaced polar
grid where the k-values will be the radial values and the 0 values will be the
angles between the int.rac ionk-yalues. The integration would proceed by
considering each possible -k 3-kl vector on the grid and numerically inte-
grating over each interaction by evaluating all the factors of the integrand
at each of these interaction conditions. Instead, a special form of a polar
grid, see Figure 1, was set up where the radials were spaced in a geometric
progression. The first radial value, k , was multiplied by A to produce the
second radial, and the second radial value was multiplied by X to produce the
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2third radial, X k, and so on. As can be seen in Figure 1 a set of parallel

interaction i-vectors is produced between the 18* and 0* radials. By consid-
ering the geometry of these parallel P-vectors we find that the ratio of the
magnitude off2 to the magnitude of is equal to X. If we compare the

24. -co-ordinates of the two locus equations for P1 and P2 we find that x2 - xI

and Y2 
= Ayl. Therefore, if we have the co-ordinates for the P1-locus, we

can calculate the co-ordinates of the P2-1ocus and the other parallel f-vector

loci by just multiplying the initial locus co-ordinates by the appropriate
multiple of A. Since the calculation of each separate locus for each inter-
action would require a lot of computer time, the specialized grid allows us
to calculate only a basic set of loci which can be used over and over.

The other factors of the integrand which are depepdent on the specific

interaction and the specific locus also scale by various factors of X, the

geometric spacing constant. The phase space or gradient term scales by X

and the coupling coefficient scales by 16. The ds differential along the
locus curve scales by X. All these factors can be combined into a common

15/2scale factor, X . Again, a basic set of phase space terms and coupling
co-efficients can be set up with the corresponding loci co-ordinates to be
used with the appropriate A value for numerical evaluation of the integral.

The P-vector in Figure 1 can also be rotated to different orienta ions
on the grid. In these cases the basic loci can be rotated to the new P-vector
position and used in the calculations.

The density function is the only factor of the integrand that was not
treated by the scaling factors. The density can be considered to be a sum
of a pumped transfer and a diffusive transfer (see Figure 2). The subscripts
on the n's refer to the density of the corresponding ki-vector. The density
of each of the wavtnumbers is calculated using the JONSWAP spectral form in
Figure 2 to alculate the frequency dependent E(f). E(k) is calculated from
E(f). A cos 9 spreading function was used for the test cases.

5. THE RESULTS. Figure 3 shows the contoured results for the Pierson-
Moskowitz spectrum. The Pierson-Moskowitz spectrum can be represented by
the JONSWAP spectral function in Figure 2 with y - 1.0 and f. = 0.3 sec-1

m
Numerical values compare favorably with Webb's contour results for the

Pierson-Moskowitz spectrum. The contour results give the value for -dt'
the non-linear energy transfer at the various orientations of k in the
spectral region being considered. The magnitude of k is graphed on the
x-axis and the angular orientation of the k-vector is graphed on the y-axis.

The remaining figures show the bne-dimensional non-linear energy trans-
fer, S(f), as a function of frequency. The one-dimensional non-linear energy
transfer, S(f), is calculated by summing the two-dimensional transfer ov :r
all the possible angular orientations. The spectral energy function, E(f),
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is graphed with a dotted line on top of the non-linear transfer. The y and
a parameters listed on the titles of the graphs are the shape parameters in
the analytical JONSWAP spectral representation in Figure 2. f was leftm
equal to 0.3 Hz in all cases. a is the value of a when f is below f

and ob is the value of a when f is greater than f . All the results showm
the positive transfer on the low frequency side of the spectrum, the negative
transfer in the region around and above f, and the positive transfer at the
region of high frequency. The spectra with y = 12.0 is especially interesting
since it seems to oscillate between positive and negative transfer in the high
frequency region, and this spectra seeme to demonstrate how the non-linear
energy transfer is attempting to bring the energy system back to an equilib-
rium condition by transfering the energy to different parts of the spectrum.

6. CONCLUSION. The specialized grid presented in this paper is an
effective time-saving tool when calculating the non-linear energy transfer
for a whole spectrum. Routines that have been developed in the past have
been too expensive to run for a whole spectrum. The computer time for the

Pierson-Moskowitz spectrum using thirty values of k (0.14 m -1 to 2.44 m-1 )

and angular increments from -90 to +900 in 4.5@ increments was 151 seconds
on the CRAY computer.

If the reader is interested in a more complete discussion of the theory
and method discussed in this paper, the same topic will be covered in more
depth in Technical Report 11 of the Wave Information Study. This report will
be published later this year at the U. S. Army Engineer Waterways Experimeut
Station.
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DENSITY FUNCTION

3 n n$(n 4 - n2) +n 2 n4 (n3 - n,)
Purpd Diffdsive
transfer transfer

n.. = F(ki). where F(R) is two-dimensional spectrumII with respect to wave number

F(k i) = E(k) cos2 0
where cosx is the spreading function
E(k) is a transformation of E(f) using c. V

where E(f) is represented using the JONSWAP spectral form

E(f) =a gi (2i) 4t5 exp (1Im 2U2 f 2

for the Pierson-Moskowitz spectrum:
fm = 0.3
a = 0.01

"- 1.0
* is a shape parameter
* is Phillips equilibrium constant

Figure 2. A description of the action density used in Hasselmann's equation
and the JONSWAP spectral form used to evaluate the energy at each
specific frequency, f, or wavenumber, k. e is the spreading angle,
Wi is angular velocity, cgis phase velocity, g is gravity, and
fm is the frequency of the peak of the spectrum
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CONSTRAINED AND UNCONSTRAINED VARIATIONAL FINITE ELEMENT FORMULATION

OF SOLUTIONS TO A STRESS WAVE PROBLEM - A NUMERICAL COMPARISON

Julian J. Wu and C. N. Shen
U.S. Army Armament Research & Development Command

Large Caliber Weapon Systems Laboratory
Benet Weapons Laboratory
Watervliet, NY 12189

ABSTRACT. Unconstrained variational formulation has been applied to
initial, boundary value problems previously with some numerical success (refs.
1,2). More recently, an adjoint bilinear variational principle has also been
developed for initial and initial-boundary value problems which requires that
the initial conditions be satisfied exactly and hence is a constrained
variational formulation (refs. 3,4). This present paper compares the
numerical results of these two variational formulations for the case of a
stress wave problem in a uniform bar.

1. INTRODUCTION. This note presents the solution formulation and finite
element discretization of a stress wave problem with discontinuous data in two
variational schemes. The first is in a sense a generalized Galerkin's
approach in that it works for non-self adjoint problem and that all the end
conditions are made to be natural ones and hence none of them are required to
be satisfied by the trial functions. This unconstrained variational finite
element formulation has been applied to initial/boundary value problems other
than wave equations previously (refs. 1,2). More recently, an adjoint
bilinear variational principle has been developed for initial and initial/
boundary value problems which requires that the initial conditions be satis-
fied exactly and the variations of the adjoint variable be set to vanish. It
is consc:quently a constrained variational formulation. This note compares one
formulation and numerical results with those of the other.

First, in Section 2, the ohysical problem of a longitudinal stress wave
in an elastic rod is stated. -71e rod is fixed at one end and free at the
other end. The discontinuity data arises from the initial linear displace-
ment, corresponding to a constant stress, due to a force applied at the "free"
end. This force suddenly disappears at time zero causing a stress discontinu-
ity at the free end. The two variational formulations for the stated problem
are introduced in Section 3. Finite element discretization and shape func-
tions are introduced in Section 4. Finally, numerical results and comparisons
are made in Section 5.

2. STATEMENT OF THE PROBLEM. The problem considered here is that of a
longitudinal stress in a rod. The differential equation can be written as

32u I a2u 0 x L
__x= - -~t .~ ' (1)
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1

with

a2 - -/P (2)

where u - u(x,t) is the axial displacement
x,t are the coordinates in axial direction and in time, respectively
P,E are density and Young's modulus, respectively, of the rod material
I - length of the rod
T - some finite time of interest

For the boundary conditions, we will consider a rod fixed at one end and
not restrained at the other end. Hence

u(Ot) - 0

au (3)

-(1,t) - 0

The dynamics of the problem is due to the initial conditions. It is
assumed that the rod is stretched to a linear displacement by a force P which
vanishes aL Lime L > 0 (see Figure 1). The initial velocity of Lhe rod is
assumed to be zero. Thus

P
u(xO) - - xAS

-(x,o) - 0
3t

~P,19,1,A

e -

Figure 1. Problem Configuration and Applied Loa at Zero Time
(i.e., P- 0 for t > 0).
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It is convenient to use dimensionless parameters. Let

u a u/1 , x x/t , t- t/T (5)

Then, Eq. (1) in dimensionless form is

32 u b 2u 0 x 1
- b - ---',- (6)

where

a T

The boundary conditions become
au -

u(Ot) -0 , - (I't) -0 (8)ax

and

-- -- au -U(,uiP , (x,o0)io (9)u(x,O) -Px , - =xO 9
at

where

- P
P -(10)

AE
is the force in dimensionless form.

The stated problem in dimensionless form are Eqs. (6), (8), and (9) with
the new dimensionless parameters related to physical counterparts by Eqs. (5),
(6), and (10). To simplify writing, we shall drop the bars in Eqs. (6). (8),
and (9), and rewrite them as

u" - b2u 0 ; (6')
o 4 t ( 1

u(Ot) - 0 ; u'(1,t) W 0 (8')

u(x,t) - Px ; u(x,o) - 0 (9')

where a prime (') indicates differentiation with respect to x and a dot (.),
with respect to t.
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3. TWO VARIATIONAL FORMULATIONS OF SOLUTIONS. Consider a variational

problem

61o - 0 (ha)

with

1o - Io(uv) - f0 f0 (-u'v'+b2 u)dxdt (hib)

where u(x,t) and v(x,t) are said to be adjoint to each other. It is a simple
matter to see that this problem is an indeterminate one. However, the
functional of Eq. (1ib) can be modified to a variational problem which is
equivalent to the boundary/initial problem of Eqs. (6'), (8'), and (9').
Thus, consider

61 W 0 (12a)

with

I - I(u,v) = f f (-u'v+bv)dxdt

+ kI 0 u(O,t)v(O,t)dt

+ k2b
2 fl [u(x,O) - uo(x)Jv(x,l)dx + b 2  I ul(x)v(x,O)dx (12b)

0 0o

We shall take the first variation of the function I(u,v) of Eq. (12b) in
such a manner that 8v is completely arbitrary while 6u is set to zero
identically. Hence, by means of integrations-by-parts, one has

1 1"
(I1)uu.0 = IO (u"-b 2u)8vdxdt

I uV(1,t)6v(l,t)dt
0

+ f [u'(O,t) + klu(O,t)]6v(0,t)dt0

+ b2f I(x,l) + k2lu(x,O) - uo(x)] },v(x,l)dx
0

-bof [u(x,O) - ul(x)]6v(x,O)dx - 0 (13)
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The fact that 6v(xt) is completely arbitrary enables us to conclude from Eq.

(13) that

u" - b 2ij- 0

o 4 t ( 1

u1(,t) - 0

u'(O,t) + klu(O,t) = 0 (14)

i(x,l) + k2[u(x,O) - uo(x)] = 0

and
a(x,O) - ul(x) - 0

It is then observed that the initial/boundary value problem defined by Eq.
(14) reduces to that of Eqs. (6'), (8'), and (9') if one lets kj and k2 go to
infinity (and with uo(x) - Px and ul(x) - 0). This f.ct suggests that the
variational problem of Eqs. (12) can be used as a basis of a finite element
discretization for the approximate solutions to the original initial/boundary
problem. It should be noted that all the axialiary conditions in Eqs. (14)
are the so called natural boundary conditions. ' They are the consequence of
the variational problem - just like the differential equation itself. For
this reason, the above solution is referred to as an unconstrained variational
formulation.

Another approach begins from Eq. (lib). With 6u - 0 once again, one has

1 1
I° - IO 1 (-u'6v'+b 2u6;)dxdt

+ f U'(l,t)6v(l,t)dt - fo u(O,t)6v(O,t)dt

b2f 0 u(x,1)6v(x,l)dx + b2f0 u(x,0)6v(x:O)dx 0 (15)

with the constrained conditions

u(O,t) - 0 ; u'(1,t) - 0 for 0 4 t 4 1 (16) '

u(xO) - Uo(X) ; u(x,O) - 0 for 0 4 x 1

It was shown in another paper (ref. 4) that the variations of the adjoint
variable must be constrained as follows

6v(l,t) - 0 ; 6v'(O,t) - 0 for 0 4 t ( 1
(17)

8v(x,1) 0 ;(x,1) - 0 for 0 O x 1 1
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4. FINITE ELEMENT DISCRETIZATION AND SHAPE FUNCTIONS. Through
nondimensionalization, the region of interest always remains to be a unit
square: 0 4 x 4 1 and 0 4 t 4 1. The finite element discretization is a
subdivision of this unit square into smaller rectangles, the elements. A
typical element scheme is shown in Figure 2 where a typical (i,j)th element is
also shown. In terms of the element variables Eq. (12a) is now written as

61 = 6 6I(i,j) - 0 (18)
iA

Variables u(x,t) and v(x,t) become u(i j)( ,n) and v(i,)(,n) respectively
where E,n are local independent variables in spatial an temporal axis also
shown in Figure 2.

Relations between global and local coordinates are given as follows

- E(i) - Kx - i + 1
(19)

n n(j) - Lt - j + 1

where K and L are the number of segments in x and t directions, respectively
(see Figure 2).

Shape funcLions are introduced as follows. Let

u(ij)(ET) - aT(,n)O(ij) (20)

where a(&,n) is the shape function vector and U(i,j) is the discretized
unknown vector. In this paper, a(&,n) is selected as the following.

Let ak(,n) be a component of vector a(t,n) k - 1,2,...,16, and

k = 1,2, ..... 16

ak(&,n) - bi(6)bj(n) ; (21)
i,j - 1,2,3,4

with

b1 (&) -1 - 342 + W

b2() - 2C2 + 3

~(22)

b3(C ) - 3t2 - 2 (2

b4(_) - + 1

The correspondence between the index k and the pair (ij) in Eq. (20) is given
in Table I.
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TABLE 1. CORRESPONDENCE BETWEEN k AND (ij) IN EQ. (20)

k ij)k (ij)

1 (,)9 (1,3)
2 (2,1) 10 (2,3)

4 (2,2) 12 (2,4)
5 (3,1) 13 (3,3)
6 (4,1) 14 (4,3)
7 (3,2) 15 (3,4)
8 (4,2) 16 (4,4)

With the conventions as stated above, the meaning of the unknowns 11k(ij) in
the vector U(ij) is as follows

au au u
11- u(0,O) U2 11- -(0,0) ;U3-= -(0,0) U 14--O0an -- d '0

au au 32U
U15 - u(1,O) U 16 -- (1,0) U 17 - -(1,0) U 18 ---- (1,0)

3Tacan (23)

auau a2u
Ug u(0,1) ; 110 -- (0,10 ; 11 - -(0,1) U 112 7C---0,1)T,

au au 92u

1113 -u(1,1) U 114 -(1,1) ;U15 -- (1,1) U 116 -- (,)
an Mln

For the unconstrained formulation, Eq. (20) is used in Eq. (12). The

result is4

K L K L L k

I yS(i j)T{- - A + b2 - B)'A(i,j) + I 6yi j)T() C I~~j
L k2b

2  K b2k2
+~~ ~ 6VyiIiL----)D U(i1

K i,1),- K

K b2  (4

K
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where

10foaCa'C~d ; . fo f e aaT di

fl- a(0,r1)aT(0,1)dn ; p - I E(C,1)4T(9,0)dn (25)

1 1o

The expression of F(j) and G(I) can be further reduced Into a form more
readily computed. wr~ite

16
uo~i)( - jT(CO)jV0(i) I ak(C,0)Uok,(I)

k-i
(26)

16
e T 1 1 (E10)vo(i) I - EOUki

Since

ak(FE,0) -bi(O)bj(0)

ak,TI(E,0) -iEbjO

and

bl(0) -1,bj(0) -0 for j - 2,3,4

b92(0) I b'j(O) - 0 for j - 1,3,4

From Table 1, one then observes that

ak(C,O) - 0 for all k except k - 1,2,5,6

aki(~) -0 for all k except k - 3,4,7,8

Hence, In Eq.,(.;6), only U01") U02(i) U05(1)i and U06(i) are used inexpresIng U0(JP and only Uo3(i 1, U04(i~j, U07(i$, and jj0 8 ( are used in
expressing u 1 (i)(M. Thus ve shall write

!(i) - f (C,l),!T(C,0)dC MOMi - IFU01
(27)

0(i - o*~i)
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with
1I

S- f0 a(E,0)aT(EO)d(

(28)

-f a('0)a1'n(1,0)d1

The way to set up Uo(i) is that first set all Uok(i) to zero for all
k = 1,2,...,16. That set Uok(i) for k - 1,2,3,4,5,6,7 and 8 as follows.

uol(i) - u(i)(o) U U0 2 () = uO0 ()(o) ; U03 (i) = ul(i)(o)

U0 4 (i) ult(O) ; U0 5 - uo(i)(l) ; U0 6 (i) = uo,)(l)

U07(i) -ul(i)(1) ; U08 ( i ) = Ul,t(i)(1) (29)

With vectors YO(i), F, and G completely defined above, Eq. (24) can be
rewritten as

K L K L L k 1
I 6V(ij)T{ - A + b2 - B} U(ij) + I 6y(i,j)T(-)C U(Ij)

i-l J1 K J- L

(30)
K b2k2  K b2k2 b2

+ 1 6V(ij)T(---)D U(i,I) [V( ,L)T( --- )F - 6V(i, 1)T(-)GjUo(i)
K is ~ K - K

Now Eq. (30) is readily assembled into a global matrix equation in a standard
manner.

6VTK U 6VTP (31)

or
KU P (31)

due to the fact 6V is completely arbitrary. Thus Eq. (31) is solved for U.

5. NUMERICAL RESULTS AND COMPARISONS. Some preliminary results of
computation are presented here. We shall set b - 1 in the differential

equation (6') for simplicity. Thus,

2  t2

b 2  -() ---- 1 (32)
E T a2T

2
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or,
T - (3)

a

The exact solution for t = 0, 0.2T, and 0.4T are given in Figures 3 and 4.

First, the results from the unconstrained variational formulation. Using
a grid scheme of 5x1, the numerical results for displacements and axial
stresses are tabulated in Tables II and III where the exact solutions are also
given for comparison. The graphic comparisons are shown in Figures 5 and 6
where the calculated solutions are indicated by crosses (x) and the exact
solution is plotted in solid lines. It is clear in these figures that the
computed results generally agree with the exact analytical solution. As a
further evidence of convergence, a finer grid scheme of lOxl is taken and the
improved solution is shown in Figures 7 and 8.

Numerical results from the constrained formulation follow the general
trend as the unconstrained one as indicated in Figures 9 and 10, as well as
the tabulated comparison with the exact solution in Tables IV and V.

TABLE II. SOLUTIONS TO THE STRESS WAVE PROBLEM USING
UNCONSTRAINED VARIATIONAL FORMULATION

£
t - 0.2T = 0.2(-), b = 1.0; Grid: 5xl

a

u axu/x

x Computed Exact Computed Exact

0 0.000 0.0 0.994 1.0
0.2 0.199 0.2 0.989 1.0
0.4 0.399 0.4 0.965 1.0
0.6 0.598 0.6 0.896 1.0
0.8 0.789 0.8* 0.550 0.0*
1.0 0.806 0.8 0.403 0.0

*Point of discontinuity.
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TABLE I1. SOLUTIONS TO THE STRESS WAVE PROBLEM USING
UNCONSTRAINED VARIATIONAL FORMULATION

t - 0.4T - 0.4(-), b - 1.0; Grid: 5x1
a

u au/x

x Computed Exact Computed Exact

0 0.000 0.0 0.988 1.0
0.2 0.200 0.2 0.976 1.0
0.4 0.399 0.4 0.927 1.0
0.6 0.594 0.6 0.714 0.0*
0.8 0.698 0.6 0.467 0.0
1.0 0.791 0.6 0.151 0.0

*Point of discontinuity.

TABLE IV. SOLUTIONS TO THE STRESS WAVE PROBLEM USING
CONSTRAINED VARIATIONAL FORMULATION

t - 0.1T, b - 1; Grid: 5xl

u au/ax

x Computed Exact Computed Exact

0 0.0 0.0 0.986 1.0
0.2 0.200 0.2 0.984 1.0
0.4 0.399 0.4 0.944 1.0
0.6 0.596 0.6 0.784 1.0
0.8 0.797 0.8* - 0.049 0.0*
1.0 0.874 0.8 0.0 0.0

*Point of discontinuity.
4
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TABLE V. SOLUTIONS TO THE STRESS WAVE PROBLEM USING
CONSTRAINED VARIATIONAL FORMULATION

t - O.1T, b - 1.0; Grid: 5xl

u au/x

x Computed Exact Computed Exact

0 0. 0.0 1.000 1.0
0.1 0.100 0.1 1.000 1.0
0.2 0.200 0.2 1.000 1.0
0.2 0.300 0.3 1.000 1.0
0.4 0.400 0.4 0.999 1.0
0.5 0.500 0.5 0.997 1.0
0.6 0.600 0.6 0.986 1.0
0.7 0.700 0.7 0.945 1.0
0.8 0.798 0.8 0.787 1.0
0.9 0.898 0.9* - 0.038 0.0*
1.0 0.936 0.9 0.0 0.0

*Point of discontinuity.
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Figure 3. Exact Solution to the Problem: Longitudinal
Displacement at t -0, 0.2T, and 0.4T.
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Figure .44 Exact Solution to the Problem: Axial Stress at
t - 0, 0.2T, and 0.4T.
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Figure 5. Displacement Solutions by the Unconstrained Variational
Formulation (t - 0, 0.2T, and 0.4T), and Comparison
with Exact Solutions. Grid: 5xl.
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Figure 6. Stress Solutions by the Unconstrained Variational
Formulation (t - 0, 0.2T, and OA4T) and Comparisoli
with Exact Solutions. Grid: 5xl.
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Figure 7. Displacement Solutions by the Unconstrained Variational
Formulations (t - 0.1T) and Comparison with Exact
Solutions. Grid: 10xl.
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Figure 8. Stress Solution by the Unconstrained Variational
Formulations (t - 0.1T) and Comparison with Exact
Solutions. Grid: lOxi.
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Figure 9. Displacement Solutions by the Constrained Variational
Formulations (t = 0.2T) and Comparison with Exact
Solutions. Grid: 5x1.
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Formulations (t - 0.2T) and Comparison with Exact
Solutions. Grid: Sxl.

I

i, i 497

II



NUMERICAL SOLUTIONS USING ADJOINT VARIATIONAL

FORMULATION TO STRESS WAVE PROBLEMS

C. N. Shen and J. J. Wu
U.S. Army Armament Research and Development Command

Large Caliber Weapon Systems Laboratory
Benet Weapons Laboratory
Watervliet, NY 12189

ABSTRACT. A well known advantage of variational solution formulation to
boundary value problems is that the differentiability requirements of the
approximate solutions can be relaxed. For initial value problems, however,
this advantage is somewhat diminished by the complication due to the
appearance of the farther end condition. This complication can be eliminated
by the use of an adjoint variational principle as we have demonstrated for a
simple initial value problem in a previous paper. The more involved analysis
for mixed initial boundary value problem has also been wrked out.

The present paper deals with the numerical implementation of this more
involved analysis in conjunction with cubic Hermite pol3yno--ials as the
approximate functions. The specific example used for numerical results is the
longitudinal stress wave of a uniform bar.

First, the adjoint principle associated with this problem is stated. It
is followed by the discretized counterparts in spatial and temporal
dimensions. The procedures involving the assemblage of the "mass" and
"stiffness" matrices in the two dimensions are described. Due to the null
variations of some adjoint variables, certain rows of the matrices are
eliminated. Because certain variables are known at the boundaries, the
unknown variables for the next interval of time can be computed by inversion
of a band matrix in terms of their jresent values.

1. INTRODUCTION. The purpose of this paper is to employ the adjoint
variational principle in the form of finite element formulation for solving
the stress wave problems. The hyperbolic partial differential equation
governs the motion is second order both in spatial and time domains.

Ly(xt) + Q(x,t) - 0 (1)

where
Ly - (aYt)t + ('Yx)x (2)

We seek explicitly the numerical transient solutions of y, yt, Yx and Yxt for
assigned boundary and initial conditions. The term yx will give the stress
wave in a longitudinal bar. The study is the extension of previous wrk on
initial and boundary value problems (ref. 1).
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2. INTEGRAL OF BILINEAR EXPRESSION. The integral of a bilinear
expression for a two dimensional problem having second order partial
derivatives in both space and tine can be written as

xb tb-
I M f f bl y(x,t),y(x,t)ldtdx (3)

xo to

where Q[y,y] ia a given bilinear expression in the form

a[y,y] - cYtYt + tYxYx (4)

the quantity y is the adjoint of y and the subscripts t and x indicate the
partial derivatives of the functions y and y.

Two different forms of integrals and end conditions can be obtained from
Eq. (4). The first form is obtained by integrating by parts on the adjoint
variable.

xb tb- xb - tb tb xb
I=f f yLydtdx + f /cytyjto dx + fto lyjY Xo dt (5)

where Ly is given in Eq. (2).

In addition, we can perform integration on the original variable to give

xb tb -xb - tb tb xb
I -f yLydtdx + Oaytyl dx + fto xy dt (6)

10 o o toto 1

where

Ly - (Qxyt)t+ (Ltyx)x (7)

In a previous paper (ref. 1) we show that the bilinear concomitant D has
to be identically zero, i.e.,

Kbtb~ K b tb -

D w f f yLydtdx - f f yLydtdx (8)
Xo to xo to

By equating Eqs. (5) and (6) and solving for D in Eq. (8), we are converting
the double integral into two single integrals in terms of the initial and
boundary conditions.

We can express the quantity D as the sum of two parts for end conditions
as D1 and D2 . Thus one defines

D - DI - D2 (9)

The terms in D1 involve the initial conditions of y and y as
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Xb  Lby tb
D- tf yy - Cty It)dx

1xb  (10t

{fb(YtbYb-YtbYb) Oo(YtoYo'YtoYo) )dx (10)Xo

The terms in D2 involve the boundary conditions of y and y as

tb -lXb _ - b
D2- f (t yy O tyxy )dttoo1 1o

tb
to (J(Yxbmo-YxbYb) - Ao(YxoYo-YxoYo))dt (1)

In order that D- 0 in FAq. (9) it is sufficient that

D1  0 (12a)
and

D2  0 (12b)

3. END CONIETLONS FOR THE ADJOINT SYSTE S. In order to satisfy the two
requirements in Eq. (12) we separate them in two parts. Let us consider first
the Lime domain and assume that the adjoint variables are assigned as

Yb ' Yo , Yo " Yb (13)

Ytb %" YLo • Yto " % Ytb (14)

ab * 0 *0 (15)

The above adjoint initial conditions satisfy the requirement that DI S 0 in
Eq. (10). Now we turn to the spatial domain and asume that that adjoint
variables are

Yb m Yb YO M YO (16)

Yxb " Yxb Yxo M YXO (17)

The above adjoint boundary conditions satisfy the requirement that D2 S 0 in
Eq. (11).

By giving the appropriate values of these djoLnt variables in terms of
the original variables one may find that the requirement D - 0 can be
satisfied. This leads to the result (ref. 1) previously found as

- tb lb - tb xb
JLty] - I I Qydtdx + to  y(QLy)dtdx - 0 (18)
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4. FIRST VARIATION. By taking variation on Eq. (18) we have

61 - 6J[ sy) + 6j[ sy]

tb ~tb x

-ft f X06y(Ly)dtdx + f tof xoy(L6y)dtdx -0 (19)-Sto go tro go

where

tb Xb-
6J[6y fb 6y(Ly+Q)dtdx (20)

to f 0
and

tb xb -

db(syj ft o 6y(Ly+Q)dtdx (21)
to 1

Since D- 0 in Eq. (8) the variation 6D should be zero

6D - 6D[6y + SD[6y] - 0 (22)

Since the variation 8y and 6y are independent, then

tb xb- tb xb --
6D[6y] - fto f y(L6y)dtdx - ft f 6y(Ly)dtdx - 0 (23)

which is the same as the last two terms in Eq. (19) which vanish. Thus

6J - 6J[6yj + 6J[6y - 0 (24)

since the variation 6y and 6y are independent

84f6yJ - ft f ay(Ly4Q)dtdx - 0 (25)
to 10

where Ly is given in Eq. (2) and contains higher derivatives than the first
partials in y. It is intended to include only lower order partial
differentiation in y. This can be achieved by considering the variations of
the bilinear expression I given by Eqs. (3) and (4) as

- tb K

61[6y] - fto f X0 [0yt6yt + tyx6yxdtdx (26)

A different form of the above variation can be obtained from Eq. (5) as

- Kb ftb 6- Kb - tb tb - Kb
6116y] -y 6yLydtdx + f 6yaytj dx + 6 yCyXI dt (27)

10 to 1O to to 10
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Equating Eqs. (26) and (27), solving for the term containing integral for 6yLy
and substituting into Eq. (25) we have

- -- tb tb -xb
6J yJ I f Yt6YIto dx + f to yx6yI dt

10o t to 1o

xb tb - b tb --+ fxb f 6yQdtdx - fXb fi [ayt6yt + tyx6yxldtdx - 0 (28)
Xo to Xo to

This is the key equation which uses variational principle in solving a mixed
initial and boundary value problem for a wave equation.

5. DISCUSSION OF THE VARIATIONAL EQUATION. Let us discuss the various
terms in Eq. (28), the variational formulation of the wave equation, into
three parts as follows.

(1) The initial conditions of the original variables are given and
variations of the adjoints at the far end are zero. The first term in Eq.
(28) contains the product of yt6y evaluated at the initial condition yto 6yo
and at the final condition ytb6Fb. Since the value of yb are known by Eqs.
(13) and (16). 67 - 0. That is, the variations of the adjoint variable at
the far end are zero.

(2) The boundary conditions of the original variables and variation of
the adjoints can be determined. The second term in Eq. (28) is the boundary
term involving the variation 67 and the variable yx. For a longitudinal or a
torsional bar the end conditions are

from Eq. (16) for the fixed end

y M 0 y - 0 6 - 0 (29)

from Eq. (17) for the free end

Yx W 0 YX " 0 6yx - 0 (30)

The variations in the adjoint variables shown in the last column coincide
to the same end conditions in the original variables given in the first
column, whether it is on the left or the right boundary.

(3) Interior Region - The last two terms in Eq. (28) give the interior
region where the forcing function Q, the adjoint variation 6', 6ft , and 6fx
and the variables Yt, and Yx are shown. No second order partial of y with
respect to x is present. Thus the variables that are needed for the
computation are y, yt, and Yx. This requires a cl continuity in both spatial
and time domain.

503



6. TRANSFOR14ATION OF (ORDIN&TES. The integral signs in Eq. (28) can be
converted into summation signs if discrete intervals for integration are used.
We may take some scale factors to nondimensionalize the problem by giving

to " 0 , tb n 1 0 4 t 4 1 (31)

xo - 0 , xlo 1 0 4 x 4 1 (32)

Moreover, Eq. (28) can be discretized by letting

Ht-i+l 0 4 t 4 I i - 1,2,...,H (33)

- Kx-J+1 0 n 14 1 - 1,2,...,K (34)

where R and K are number of intervals for t and x respectively. Thus the
partial derivatives are:

Yt - - H -L - Hyt (35)at at

ay ay
.- - - - Kyn (36)x a

Use of Eqs. (28), (31) through (36) then leads to

0- 6J[6Y1

KH I tb
- K fO MY&(i iJ)6y(i-J)dr l 

b

fiK 0 toM

R- 0 Xo

K H
+ I f f Q6y(1,J)d~dn

j.1 l HK 0 0
K H _ R (j K L I ( j

I (- f £ MY~')y~iJdd - f f ij)y LyJ~yitL. l
j I-i K 0 o R 0 fo00 0

(37)

7. SPLINE FUNCTION. We my express the variables y(i,J) and 6y(i,J) in
Eq. (37-) in terms of the (1x16) spline function aT(t,n) and the (16xl) node
point function y(iJ) as follows.

y(iJ)(,rn) - aT(En)¥(ij) (38)
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where

aT( ,,n) - {[a1(t,n)jT [2(gn)]T [a(g,q)]T [a4(g,n)]T }  (39)

and

- aT(,ii)SY(iJ) (40)

A typical term for a product can be written as
&y(i. )y(i.J) =[ y(i.J))]Ta(C.,n)aT(E .n)yCi.j) (41)

Thus Eq. (37) becomes
K T

5J(6y) X Y(tbtJ)l PO&(tb)y(tb 'J)
J-I

I Y(toJ)]PGp (to)y(toJ)

J-1

H - T
+ I lay(' yb)T Pon(xb)y(i-xb)
imi

- X p(ixo)l P0(Xo)y('i)Xj)

K H T
+ I I 1 6 y(iJ)] q(i,i)

J-1 i-1

K H - T
I I 6y(iJ)J P(iJ)Y(L,J) - 0 (42)

J-1 i-I

where the coefficient P contains integrals involving the spline functions
a(4,n) and its partial derivatives as given in a previous paper (ref. 1).

8. GRID SYSTEMS FOR FINITE ELEMENT. We take a finite element
represented by the (16xl) vector V19,r which has a grid of four (4xl) vectors
Y1 iJ) through Y4 (iJ), thus

y(ij) . {l 1(i,J))T IY2(iJ)T [Y3(i,J)T [Y4(iJ)]T} (43)

Each of the (4xl) vector has four components, consiting of the function, its
first partials in both directions, and its ixed partial, as shown in Figure
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These vectors are,

Y(tionj) ,n+

Yi) Y&( &i, nj ) 3 ID yt( &i, inj+ 1)
Yl(i,J) - y3 (iJ) -)

Yn(i, nj)

Y~~~n~( E1+1 n) n(i, nj +)
- - - -

Y2(i(j) - Y(i+, nj) Y4(iyj) yt( i+inj+)

Yn(&i+i,ni) yn(&i+l, nj+j)

Y~n(&i+l, n3) -1Y~n( i+l, nj+l) (4

We use the vertical direction for the temporal domain. If we increase the row
index from i to i+1, then the grid point shifts down by one step and the
following holds

Yl(i+lJ) - Y2 (,J) Y3 (i+lJ) - Y4 (iJ) (45)

If we increase the column index from j to J+1 then the grid point shifts to

the right by one step and one obtains

Yl(i,J + l) - Y3 (i"J) Y2 (iuJ+l) - Y4 (ij) (46)

Figure 2 shows the relationship of the grid system by assembly of finLte
elements in the horizontal direction, which is in the spatial domain.

9. ASSEMBLY OF MATRICES. In order to solve Eq. (42) by finite element
method, assembly of matrices from local form into global form is necessary.

For instance, the last term of Eq. (42) is taken as -6Jp(Sy). Then

K H
6Jp(6y) - I I [6y(iJ)jTp(i,J)y(iJ) (47)

J-1 i-i

Since we know that the interval in time can be made as small as possible, with
H 1, we have
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- K -

aJp(#y) I [y(1,j)jTp(1,i)y(l,J )
~J-1

K{[6yI(,j)T[ 6 y2 (1,J)]T[6y 3 (1'J)]T[6Sy 4 (,J)] T) pl, P12 P13 14 Y '
J - 1 

l i
P21 P22 P23 P2 4  Y2(l ' j )

P3 1 P32 P33 P,4 Y3(l J)

P41 P42 P43 P44 Y4(l 'i)

(48)

It is noted from Figure 2 that the variables can be indexed as

y 3 ( 1, J ) yl ( l ,j+l) - Y2J+I (49)

y 4 (1,j) - y2 (1,J+l) - Y2J+2 (50)

J-O,,.. .k

For J = 0,
For j -1 0, Y2 ( 'I 1 . Y2 ('

1 ) 2 (51)

For j - k - 5

Y 3(
1 15) - YII , Y4 (1,

5) - Y12 (52)

Also from Figure 2, the adjoint variations are

6y3(,J) - 6yl(IJ + l ) - 6y2j+l (53)

y4 1(1 ,,) . +6y i 1) , 62J+1 (54)

For J -,

Y 1 Y2(1) 2 (55) 

Fori j k - 5,
6Y3(1,5) . 6sYI , 6 4 (

1 '5 ) - 12 (56)

Now the local matrice in Eq. (48) can be assembled into a global band matrix
shown in Figure 3. Those elements not explicitly written are zeroes in Figure
3.

Since the adjoint variable Yb at the far end is assigned in terms of the

known initial value Yo, the variation is

6 mb 0 (57)
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From Figure 2 we have

6Y2 - 8Y4- 6Y6 - 6 6 Y 10- 612 " EVEN 0 (58)

This is equivalent to deleting the even rows of the matrix in Figure 3. The
deletion is marked in Figure 4. The number of relationships is reduced to
half of the original dimension.

The variables YODD in Figure 2 are the initial values of the problem
which are supposed to be given. Thus, Y1, Y3 , Y5, Y7, Y9, YjI are all knowns.
The coefficients related to these knowns should eventually be shifted to the
right side of the equation.

10. FURTRER DELETIONS AND KNOWNS. Suppose we have a bar with the fixed
end at the left. Then from Eq. (29) one obtains

Yo -0 (59)
and

6yo - 0 (60)

The above equations translate to be

y(2,I) . 0 (known) (61)

and-
6y(l,l) - 0 (deletion) (62)

On the other hand we have a free end at the right. Then Eq. (30) gives

Yxb = 0 (63)
and

6Yxb - 0 (64)

The above equations yield

yn(2,6) - 0 (known) (65)
and

6y (1,6) - 0 (deletion) (66)

Figure 5 gives the variation of adjoint variables. It shows two extra
zero variations at the first row, 6y(7,1) at the left and rn('1,6) at the
right. We have also all zero variations on the second row. Figure 6 shows
the known and unknown variables. There are two extra known varibles in the
second row due to boundary conditions, y(2,1) at the left and yn 2,6) at the
right. The first row gives all known initial conditions.

11. CONCLUSIONS. Direct computation of stress, i.e., numerical solution
for first spatial derivatives of the displacement can be obtained directly.
This is Important if the problem has ooisy components in the solution of the
displacement. Computation can be made successively, i.e., the final values of
the solution at the first stage in time can be used as the initial values of
the second period in time. The variations of the adjoint variables at the far
and in time for an initial-boundary value problem are zeroes. Deletion of
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many rows in the assembled matrix is possible. The assembled atrix for
computing is reduced to less than half size in linear dimension, from (2nx2n)
to (nxn). Hence, a bigger number of intervals in the spatial dimension can be
handled. The reduced matrix is a band matrix which makes the storage
requirement for computation much easier.
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FINITE DIFFERENCE METHOD3 FOR THE
STOKES AND NAVIER-STOKES EQUATIONS

John C. Strikwerda
Mathematics Research Center and
Department of Computer Sciences
University of Wisconsin-Madison

Madison, WI 53706

ABSTRACT. This paper presents a new finite difference scheme for the
Stokes equations and incompressible Navier-Stokes equations for low Reynold's
number. The scheme uses the primitive variable formulation of the equations
and is applicable with non-uniform grids and non-rectangular geometries.
Several other methods of solving the Navier-Stokes equations are also examined
in this paper and some of their strengths and weaknesses are described.
Computational results using the new scheme are presented for the Stokes
equations for a region with curved boundaries and for a disc with polar
coordinates. The results show the method to be second-order accurate.

1. INTRODUCTION. In this paper we examine several common methods for
solving the incompressible Navier-Stokes equations by finite differences and
we present a new second-order accurate finite difference scheme for these
equations. This new scheme is designed to be applied with non-uniform grids
and non-orthogonal coordinate systems. Numerical experiments with the Stokes
equations illustrate the versatility and accuracy of the scheme.

The steady-state Stokes equations on a domain 0 in n are given by

2 +

U + f(x)
(1.1)

and the steady-state Navier-Stokes equations are

_R71 72 + + (+.f)+ + fp f(x)
(1.2)

14 g(x)

where R is the Reynolds number. We will consider the systems (1.1) and

(1.2) with Dirichlet boundary conditions

+ +
(1.3) u(x) = b(x) on a•

A necessary jondition for (1.1) or (1.2) to have a solution is that the
data g(x) and b(x) satisfy the integrability condition

(1.4) 1 g f +

where n is the outer unit normal to 3. For the mathematical theory of the
system (1.1) and (1.2) we refer to Ladyzhenskaya (1963) and Teman (1979).
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We will be concerned only wit methods that solve the systems (1.1) and
(1.2) in the primitive variables u and p and not with methods such as the
vorticity and stream-function reformulation. Also our methods are applicable
in two or three dimensions although our examples will be only in two
dimensions.

We emphasize that the scheme presented here is designed to be easily
applicable with non-rectangular geometries and non-uniform grids. The vast
majority of papers on the numerical solution of the incompressiblc Navier-
Stokes equations limit themselves to examples using rectangular geometry and
uniform grids. By way of contrast, computations with the compressible Navier-
Stokes equations routinely use non-rectangular geometries and non-unifom
grids.

The outline of the remaining sections of the paper is as follows. In
Section 2 we discuss the strengths and weaknesses of some common approaches to
solving the systems (1.1) and (1.2) and in Section 3 we discuss finite
difference schemes for these systems. The finite difference integrability
condition is discussed in Section 4, and computational results are given in
Section 5. The numerical examples of Section 5 demonstrate that the new
scheme given here can be used to give second-order accurate solutions to the
Stokes equations for non-rectangular geometries. To our knowledge no other
finite difference schemes for the Stokes or incompressible Navier-Stokes
equations in the primitive variables have been shown to be second-order
accurate for non-rectangular geometries. Computations using the new scheme
for the incompressible Navier-Stokes equations are currently being made and
will be reported when complete.

2. SOLUTION TECHNIQUES. In this section we review some approaches to
solving the Navier-Stokes and Stokes equations numerically. Few researchers
have treated the system (1.2) in the given form, most have altered it in some
way. Before examining the altered forms of (1.2) we look at the system in the
given form.

The Stokes equations (1.1) and the Navier-Stokes equations (1.2) are
elliptic systems of n + I equations in n + 1 dependent variables. The
definition of an elliptic system, as given by Douglis and Nirenberg (1957),
requires that the determinant of the principle symbol of the system not vanish
for non-zero values of dual variables. For the Navier-Stokes equations the
determinant of the principle symbol is

(2.1) det ( 2

tT 0

which is non-zero for I I * 0. Moreover, since the determinant is a
polynomial of degree 2n in the variables E = (ti,...,. t) the system1 n
requires n boundary conditions at each point of the boundary (Agmon, Douglis
and Nirenberg (1964)). These boundary conditions will usually be Dirichlet or
Neumann conditions on the velocity u.
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One of the most common ways of modifying the Navier-Stokes equations
(1.2) is to replace it by the system

_R121 +(.) +R V + u +p f(x)

(2.2)

V2p f + R- V2 g - u uj 
- u'4g

i,j j i

The last equation of (2.2) is obtained by taking the divergence of the first
equation of (1.2) and then using the last equation of (1.2) to eliminate the
divergence of velocity. The system (2.2) has the advantage over (1.2) in
that, when discretized, it can be solved using standard methods for inverting
the discrete Laplacian. However, the system (2.2) has a grave disadvantage in
that it requires n + 1 boundary conditions, one for each elliptic equation,
as opposed to (1.2) which requires only n boundary conditions. Thus any
attempt to solve (1.2) via (2.2) would require some means of determining the
correct additional boundary condition. Without the correct condition
solutions of (2.2) will not be solutions of (1.2).

Roache (1972, p. 194) suggests that the additional boundary condition be
given by the normal derivative of pressure as determined by the first equation
of (1.2) or (2.2) evaluated on the boundary. This, however, is not
satisfactory as a boundary condition since it is not independent of the system
of differential equations. Roache's suggestion leaves the system (2.2)
underdetermined.

Another boundary condition which is commonly used along boundaries
corresponding to physical surfaces is to set the normal derivative of the
pressure to zero, which is valid in the limit for high Reynolds number flow.
With this boundary condition and (1.3) the system (2.2) has the proper numbpr
of boundary conditions, however, its solutions are not solutions of (1.2).

As one would expect, the methods using (2.2) or similar systems have
difficulty with the accuracy of the pressure field and with satisfying the
incompressibilty condition on the velocities (see for example the work by
Boney, Hefner, Hirsh, and Zoby reported in Rubin and Harris (1975)).

The above mentioned difficulties are seen in computations with the time-
dependent Navier-Stokes equations as well. Roache (1972) has a discussion of
the difficulties of obtaining a zero divergence for the velocity field when
using the above approach for time dependent flows (see also Harlow and Welch
(1964)).

Because of these difficulties, it seems best not to use the derived
system (2.2) but to use the original system (1.2).

Another approach to solving the Navier-Stokes equations (1.2) is the
artificial compressibility method. The basic idea of this method is to solve
a time-dependent system of equations, whose steady-state solutions solve
(1.2), until a steady state is reached. Methods have been proposed by Chorin
(1967) and Yanenko (1967). The convergence rate of these methods is dependent
on the choice of finite difference method used to solve the system. Moreover,
as will be discussed in Section 4, it may happen that the finite difference
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equations do not have a steady-state solution, so the method cannot
converge. Taylor and Ndefo (1970) reported difficulty in getting Yanenko's
method to converge, most likely because there was no solution.

Another common method is to use the "parabolized" Navier-Stokes equations
in which the second-derivatives in the stream-wise direction are removed.
Because of its limited applicability and uncertain justification we will not
discuss this method here except to note that often an analogue of (2.2) is
derived and thus some of our observations on (2.2) also apply to the
parabolized equaitons. Raithby and Schneider (1979) discuss these
difficulties for three-dimensional flow problems.

3. FINITE DIFFERENCE SCHEMES. In this section we discuss the staggered
mesh and central finite difference schemes for (1.1) and (1.2) and introduce a
new scheme. The second-order accurate staggered mesh scheme for a uniform
cartesian grid assigns the values of each of the velocity components and the
pressure to different interlaced grids. In two dimensions with velocity
components u and v, one may assign values of u to grid locations

((i + j)h,jh), values of v to (ih,(j + -)h), and values of p to

(ih,jh), e.g. Harlow and Welch (1965), Patankar and Spalding (1972), Raithby
and Schneider (1979), Brandt and Dinar (1979). This method works very well as
long as the geometry is rectangular and the grid is unif-rm. Non-uniform
grids and grid mapping techniques cannot be conveniently handled.

The staggered mesh schemes also have some difficulty at boundaries. For
example, when both velocity components are specified at a boundary then that
velocity component whose mesh lines do not lie on the boundary requires some
special treatment.

The central difference scheme on a uniform rectangular mesh assigns
values of all the variables to each grid point. The divergence and gradient
operators are approximated using central differences and the Laplacian is
approximated by the standard five-point discrete Laplacian. Central
difference schemes have been used by Chorin (1967, 1968) in time-dependent
calculations.

An important concept for finite difference schemes for elliptic systems
such as (1.1) and (1.2) is that of regularity (see Bube and Strikwerda (1980),
and also Frank (1968), Brandt and Dinar (1979)). Regular schemes give rise to
regularity estimates analogous to those in the theory of elliptic systems of
differential equations. Solutions to regular difference schemes will in
general be smoother than solutions to non-regular schemes and also will be
more accurate approximations to the solutions of the differential equations.

The central difference scheme is non-regular (Bube and Strikwerda
(1980)), which results in non-smooth solutions. The lack of smoothness is
most noticeable in the pressure. The staggered mesh scheme is regular. The
advantage of the central difference scheme is that it is easily implemented
with non-uniform grids as introduced by coordinate changes.

It should be emphasized that none of the difficulties mentioned above are
insurmountable. Both the staggered mesh and central differencing schemes have
been used and often quite successfully. However we will consider a new scheme
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which incorporates both regularity and ease of implementation with coordinate
grid mapping techniques.

Before introducing the new scheme we will discuss the concept of
regularity for difference schemes as given in Bube and Strikwerda (1980). A
difference operator A may be written as

Af(x) = X a (h,x)T f(x)

where TU is the translation operator given by

T Pff(x ) f(xv+ )

for multi-indices V and U.

The symbol of A is given by

a(h,x,C) = a (h,x)ei U .

For example, the first-order central difference operator in the k-th
coordinate direction has symbol

ik -ik
e h e ih Isin C
2h kk k

and the standard second-order accurate Laplacian in n-variables has the symbol

n1

-
2 sin2 1

k=1 k

A finite difference scheme for the Stokes equations is regular elliptic if the
determinant of the matrix of symbols of the scheme vanishes only for 4 equal
to zero modulo 2W. For the Stokes equations with central differencing, and
Ax = Ay - h, this determinant is

4h-2 (sin2 1 +sin 2 0 ih 1sin C

-2 1 2-

det 0 4hi 2 21 C + sin2 1 C ih Isin
( in 2 1 2i2 2/)

ih sin C ih- sin 2  0
- 2

4h-4 (sin2 1 C + sin2 1 4 )(sin 2C + sin- 2
222 1 2
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This determinant vanishes for the dual variables 1 and C equal to W,1z
and thus the scheme is not regular. One sees that the non-regularity comes
from the form of differencing used for the gradient and divergence terms. Our
new scheme is a modification of the central differencing scheme so as to make
the scheme regular.

The new scheme we consider will be called the regularized central
difference scheme. In this scheme the derivatives of pressure are
approximated as

(3.2) p - ah26 62 p

axk tkor 
k k- k+

and the first derivatives cf the velocity in the divergence equation are
approximated as

au k  k 2 2 k
(3.3) 6kOu k thk6k+6 ku

where a is a non-zero constant and 6 , 6 and 6 are the centered,k0' k+ k
forward, and backward divided differences, respectively. The Laplacian is
approximated with the usual five-point scheme. For a cartesian grid in two
dimensions the determinant of the symbol is

4h-2 (sin2 1; + sin2 1 0 d(; )

i I
det ( 4h-2 (sin2 1 + sin 2  d( 2)

\- d(-d; 2)  0

t 4h-2(sin2 1 C1 + s i n 2 12)(Jd(C12 + jd(C2)12)

2t 0 24h 2  22

where

(sinsi 1~ +sn -;

d(- d( ) -- hl~ 2 i )

1 2

CC) ( i ~ sin 2 ah'd2"( 2 si+

-2~~~/ 21 2 2 12''1' d~)

2ihlsin- - (cos - C + 4ae i sin
2 2,

Since d(C) is not zero for any value of 4, when a is non-zero, the
scheme is regular. Note that for a equal to one-sixth the approximations
(3.2) and (3.3) are third-order accurate.

Since the regularized central difference scheme is a variant of the
central difference scheme it is easy to implement with coordinate .-- ,s. At
those boundary points where the correction term would require points beyond
the boundary we use the correction term which interchanges the forward and
backward operators. This scheme also requires the use of extrapolation to
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compute the pressure values on the boundary. It has been found that third

order extrapolation gave quite good results, e.g.

(3.4) P0j - 3plj - P2j 
+

at the boundary x - 0 in two dimensions.

A number of first-order accurate schemes for the Stokes and Navier-Stokes
equations have been presented e.g. Kzivickii and Ladyzhenskaya (1966) and
Temam (1979, p. 48). In this paper we are concerned only with second-order
accurate schemes.

4. THE INTEGRABILITY CONDITION. Each of the schemes for the Stokes
equations which have been discussed in the previous section can be written as

a) Lhuh + Ghph = fh

(4.1) on

b) h" = gh

with Dirichlet boundary conditions

(4.1) c) h bh on 3

4 +

The differnce operators L , G and D are approximations to the +
differential operators 4n 1 The discrete functions f,, g and bh
are approximations to f, g and b on the mesh Qh' where h is some

measure of the fineness of the mesh h

Now let us compare the system (4.1) with the system (1.1). First note
that if Gh is a consistent approximation to the gradient then the discrete
pressure ph is determined only up to a constant. This means that the system
of linear equations (4.1) does not have full column rank. If there are as
many equations in (4.1) as there are unknowns, and this is the case for each
scheme we've considered, then the system (4.1) does not have full row rank
either. This implies that there is a constraint which the data must satisfy
to guarantee a solution, in particular, the discrete integrability condition
analogous to (1.4) must be satisfied.

There are at least two ways to satisfy the discrete integrability
condition. The first method would be to analyze the matrix corresponding to
(4.1) and determine the null space of the adjoint matrix. If the data is
constrained to be orthogonal to this null space then a solution will exist.
This approach is impractical for many situations especially if coordinate
changes have been employed since then the matrices are not easy to analyze.

A second approach, which will be adopted here, is to replace (4.1b) by

(4.1b') Dh'u ' gh + ah

where 6 is a constant chosen to guarantee a solution. The value of 6
h h
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must be determined as part of the solution. As shown in the examples in
Section 5 6 is at least O(h2) for the regularized central scheme. We
will refer to the equations (4.1a, b', c) as (4.1').

It is interesting to note that for the staggered mesh scheme on a uniform
grid one can easily satisfy the discrete integrability condition since the
calculus of finite differences mimics the differential calculus very closely,
see e.g. Kzivickii and Ladyzhenskaya (1966). Also, Ghia, Hankey, and Hodge
(1977) mention being unable to obtain a solution to the discrete Navier-Stokes
equations for certain situations. We conjecture that this difficulty was
caused by the discrete integrability condition not being satisfied.

There is the possibility that the null space of the discrete operator of
(4.1) has dimension greater than one. The regularized central scheme with the
third-order extrapolation (3.4) appears to have only a one-dimensional null
space. However, for a equal to zero numerical experiments indicate that
there are solutions which are effectively null vectors in that they solve
(4.1) with f and gh smaller than the norm of the solution by a factor
proportional o h or h 2 . The dimension of the space of nearly null vectors
and null vectors appears to be four for the central differencing scheme.
These vectors correspond to the four zeroes of the determinant of the symbol
of the difference operator.

These nearly null vectors and null vectors, other than the usual constant
pressure null solution, make solving the discrete system very difficult. On
the other hand the regular discrete systems can be solved easily by the
iterative procedure given in Strikwerda (1982).

5. COMPUTATIONAL RESULTS. In this section we present the results of
testing the new scheme described in Section 3. In the examples discussed here
the discrete Stokes equations were solved using test problems which illustrate
various features of the schemes. For each example an exact analytical
solution is known and the approximate solutions were compared to the exact
solutions to study the accuracy of the method. The value of a, the
regularity parameter, was one-sixth in all cases.

For the first test problem the Stokes equations were solved on the unit
square with a uniform grid. The exact soltion is

u = (2w)- sin Wx cos Wy

(5.1) v - (2w) "I cos Wx sin Wy

p = cos Wx Cos Wy
with f - 0 and g - coo Wx cos Wy. For this example both the accuracy and

symmetry of the solution were checked. The symmetry was checked to study the
effect of the nonsyimetric regularizing term on the symmetry of the
solution. The symmetry was measured by computing the quantities sym(u) and
sym(p) given by
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N 21/2

sym(u) ( i+ N*u /ar2

(5.2)

N 2 1/
-

sym(p) (p - PN-i,N-j - p1 2
i,j=0

for an (N + 1) x (N + 1) grid.2 The quantity p is the average value of
the pij and the norm is the £ -norm, e.g.

lu12 = U ij)2

The second test problem demonstrates the ability of the scheme to produce

second-order accurate solutions on a non-rectangular region. The exact

solution is

u &2 + 2

v = -2tn + n2

p =4 + 2n

on the region 9 which is the image of the unit square under the mapping

= x cosh(y)

2
=y- x

for (x,y) in the unit square, i.e. 0 9 x, y 4 I. Thus the equations being
solved on the unit square were

x&(xUx)x + x (ycUy)x + ygx(Uxly + yO(yUy)y

+x(xU) + + y (XnUx)y +y(yU )y Xp- ypy 0
t(XTUxx xi fyyx T xyqiy iy x~p y

for the first equation, with the second being similar, and

xEu x + ycUy + xnvx + y1vy = 0

for the third equation. The regularizing terms were added only to the terms
corresponding to px in the first equation, py in the second, and ux
and vy in the third.

In the third test problem the Stokes equations were solved on a disc
using polar coordinates with uneven grid spacing in both the radial and
angular direction. The exact solution is
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I3

u = r sin 26

v - 2r3 cos 2e

p = 6r2 sin 28

+
with f and g being zero. The uneven grid was given by

rI - .75 p + .25 P 2

S= '. - 25 sin #

where P. and p. were evenly spaced in the interval [0,1] and (0,2w]
respectively. This uneven spacing was chosen merely to show the versatility
of the scheme and is not intended to give a better resolution of the solution.

For completeness we give the Stokes equations in polar coordinates

-1 -2U -2 -2

r (rur)r + r u - r u - 2r-2Ve - Pr = 0
-1 -2 -2 -2 -1

(5.5) r ( )r + r Vee - r v + 2r-2u - r p = 0

-1 -1
r (ru) + r v8  = 0.

The difference formulas used in the numerical experiments were all second
order accurate. As an example of the formulas, the term r (ru ) was
differenced as rr

(ri+1 + ri ri + ri 2 2ri+, -r, i+l, j - u i j ) - (ri ri_1)(ui, - u i_, j . (r2+, - r2_)

The results of the numerical experiments are shown in the following
tables. Each table lists the errors incurred for grids wit N + 1 points on
a side for values of N of 20, 30, 40 and 60. Tables.I, II and III list the
relative errors for test problems 1, 2 and 3, respectively, and Table 1 also
shows the symmetry errors for problem 1. The relative errors are measured in
the -norm i.e.

er =u) (U (uij - u(xi,yi) )2. 2

Also shown is the value of 6 which is described in Section 4. Table IV
hdisplays the behavior of the error as the grid resolution is increased. The

numbers shown are values of

log(err /err2

log(N 1 /N 2 )
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where err1  and err2 are the errors for grids of NI + 1 and N2 + I
points on a side, respectively. This value should be approximately 2.0 for a
second-order scheme. The error reductions are shown for u, p and 6 . The
other velocity component had a similar error behavior in all the examp~es.
All of the solutions were computed by the iterative method given in Strikwerda
(1982).

That some of the errors were better than second-order accurate for test
problems 1 and 3 can be attributed to the third-order accurate difference
formulas used for the gradient and divergence terms. One might expect that
some of the errors would behave as third-order errors for some value of N1
and N2. However, since the discrete Laplacian is second-order accurate,
for N large enough the total scheme should be second-order accurate. It is

not clear why 6h should behave as a fourth-order error as seen in test
problem 3 and for some values of N, and N2  in test problem 1. Test
problem 2 was no better than second-order accurate since the gradient and
divergence were only second-order accurate. The third-order differences were
only used on those terms which were necessary to achieve regularity of the

scheme. The results show conclusively that the scheme has overall second-
order accuracy.

6. CONCLUSION. In this paper we have examined several finite difference
methods for the steady Stokes and incompressible Navier-Stokes equations in
primitive variables. We have shown that the regularized centered difference
scheme is second-order accurate and useful with non-rectangular regions.
Although the numerical experiments were done using the Stokes equations, for
which exact solutions were available, we believe the regularized central
scheme is equally useful with the incompressible Navier-Stokes equations at
moderate Reynolds number.
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TABLE I

N err(u) err(p) 6 sym(u) sym(p)

20 .35(-3) .17(-2) -.44(-5) .68(-3) .13(-2)

30 .11(-3) .86(-3) -.89(-6) .22(-3) .37(-3)

40 .41(-4) .51(-3) -.53(-6) .82(-4) .15(-3)

60 .19(-4) .23(-3) -.50(-7) .37(-4) .52(-4)

Errors for test problem 1 for grids with N + I points on a side for four
values of N. The _umbers in parenthesis are the decimal exponents i.e.
-35(-3) = .35 x 10-

TABLE II

N err(u) err(p) -h

20 .10(-3) .21(-2) -.24(-3)

30 .45(-4) .92(-3) -.12(-3)

40 .25(-4) .48(-3) -.74(-4)

60 .11(-4) .22(-3) -.35(-4)

Errors for test problem 2.

Table III

N err(u) err(p)

20 .75(-1) .93(-1) -.33(-2)

30 .33(-1) .34(-1) -.53(-3)

40 .19(-1) .18(-1) -.15(-3)

60 .83(-2) .75(-2) -.27(-4)

Errors for test problem 3.
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TABLE IV

NI/N 2  1 2 3

u 2.8 2.0 2.0
30/20 p 1.7 2.0 2.5

6h  4.0 1.7 4.5

u 3.4 2.0 1.940/30 p 1.8 2.3 2.2
6h  1.9 1.7 4.4

u 3.1 2.0 2.0
40/20 p 1.7 2.1 2.4

6 h  3.1 1.7 4.5

u 2.5 2.0 2.0
60/30 p 1.9 2.1 2.2

6 h  4.2 1.8 4.3

u 1.9 2.0 2.0
60/40 p 2.0 1.9 2.2

6 5.8 1.8 4.2
h

Computed order of accuracy for u, p, and 6 for the test problems.
h
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A THREE-DIMENSIONAL NUMERICAL MODEL

OF COASTAL, ESTUARINE, AND LAKE CURRENTS

Y. P. Sheng
Aeronautical Research Associates of Princeton, Inc.

P.O. Box 2229, Princeton, New Jersey 08540

H. L. Butler
U.S. Army Engineer Waterways Experiment Station

P.O. Box 631, Vicksburg, Mississippi 39180

ABSTRACT. A mathematical model capable of simulating the

three-dimensional, time-dependent currents in coastal, estuaries, and lake

waters is presented. Special computational features Included in the model

are: (1) a time-splitting technique which separates the computation of the

slowly varying internal mode (three-dimensional variables) from the

computation of the fast-varying external mode (water level and

vertically-integrated velocities), (2) an ADI algorithm for the computation of

the external mode, (3) an implicit algorithm for the vertical diffusion terms

of the internal mode equations, (4) a vertically-stretched coordinate that

allows the same order of accuracy in the vertical direction at all horizontal

locations, and (5) an algebraically-stretched grid in the horizontal

directions. These computational features lead to an efficient and versatile

three-dimensional model suitable for long-term simulations. Physical aspects

of the model are also discussed. Applications of the model to simulate

laboratory flow, tidal currents in an open bight where an analytical solution

is available, wind-driven lake currents, and tide-driven and wind-driven

coastal currents are also presented.

1. INTRODUCTION. The increasing human activities such as dredging and

energy production in coastal waters, combined with the increasing concern over

the environmental impact of these activities, has created a pressing need for

more quantitative understanding of the comprlex physical processes In coastal

waters. Mathematical models, in conjunction with field measurements, can be
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used to study many problems of practical interest - such as storm surge

prediction, sediment transport and resuspension, dredged material movement,

wave prediction, pollutant dispersal, and forces on pipelines. Various

mathematical models have been developed to study the hydrodynamic processes of

large bodies of water including coastal waters, estuaries, and large lakes.

It is fair to say that, for relatively complex mathematical models, resolving

the numerical problems is as important and difficult as resolving the physical

processes. This work discusses both aspects and emphasizes the numerical

aspect.

There exist various time and length scales in the hydrodynamic processes

of large bodies of water, ranging from the small scales of the surface waves

(1 sec < T < 20 sec, 1 cm < L ( 50 m) and the mesoscales corresponding to the

internal and inertial waves (N-1 ( T < f-1, 1UU m < L < 100 km), to the large

scales associated with the long waves (tiues, storm surges, and seiches). Oue

to a lack of physical understanding and the limitation of computer resources,

most existing numerical models of large scale processes do not resolve the

small scale and the mesoscale range, but resort tc parameterizing the

processes in these ranges. For coastal applications, the present nodel

attempts to resolve motions (1) at longer periods than the tidal periods, but

less than a month and hence are related to atmospheric forcing (wind stress or

curl of wind stress) or river runoffs, (2) at tidal periods and their

harmonics and hence are related to tidal forcing and resonance effect of the

basin, and (3) at shorter periods than the tidal periods and hence are related

to barotropic or baroclinic waves propagating towards the coast. However,

current emphasis is placed on the first two cases. Effects of earth rotation,

stratification, and bottom topography are Included. For barotropic or

baroclinic waves propagating in stratified fluid, the wave length may be quite

short and thus requires a very fine horizontal grid resolution (<1 km). The

primary purpose of the current modeling effort is to study the dispersion of

particulate or dissolved species (e.g. sediment, dredged material, heat)

associated with wind events (on the order of 1 to 10 days) or tidal events

(from spring to neap tides).
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Due to a limitation of computer resources, simpler models such as

vertically-averaged models (Leendertse, 1970; Butler, 198Ua) and

laterally-averaged models (Blumberg, 1977; Edinger and Buchak, 1979) hat,

been constructed to allow for long-term simulation, at the expense of spatial

resolution in one or more dimensions. Such models, although useful in

parametric studies and limiting cases such as storm surge predictions, are

insufficient for studies of the generally three-dimensional hydrodynamic

processes such as sediment transport and wind-driven currents on the

continental shelf.

Generally, there are three types of three-dimensional hydrodynamic

models: (1) Steady-state models (Gedney and Lick, 1972; Sheng and

Lick, 1972; Sheng, 1975) which neglect the transient effect altogether;

(2) Rigid-lid, time-dependent models (Bennett, 1977; Sheng, 1975) which

eliminate surface gravity waves from the problem; and (3) Free-surface,

time-dependent models (Cheng, et al., 1975; Leendertse and Liu, 197b; Sheng,

1975; Forristal, et al., 1977; and Sheng, et al., 1978) which are more

general.

In order to study the dynamic response of coastal waters (e.g., the

Mississippi Sound and adjacent continental shelf waters) to tides, winds, and

meteorological forcing, a three-dimensional, free-surface, time-dependent

model is often desired. In addition, the response of coastal waters is

strongly influenced by climate, geomorphology, and stratification. Hence,

these features have to be properly resolved by the mathematical model.

Unfortunately, most three-dimensional, free-surface models require an

exceedingly small time step (associated with the propagation of gravity wave

over the distance of a horizontal grid spacing), and hence their applications

are limited. For example, Leendertse and Liu (1975) used time steps on the

order of 10 seconds while applying their model to Chesapeake Bay and $an

Francisco Bay. Consequently, despite the comprehensiveness of their model,

simulation runs were only carried out to a few tidal cycles. Recently,

Sheng, et al. (1978) separated the computatloh of three-dimensional velocities

(Internal mode) which are governed by slower internal dynamics, from the
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computation of water level and mass fluxes (external mode) which are governed

by fast surface waves - thus resulting in an efficient three-dimensional

model. By computing the internal mode with a fairly large time step (- 1/2 hr
for Lake Erie with a 1/2 mile grid), the computational efficiency of the
three-dimensional model has become comparable to that of a three-dimensional,
rigid-lid model or a vertically-averaged model. More recently (Sheng, 1981)
we have implemented an implicit numerical scheme for the external computation,

thus further increasing the efficiency of the three-dimensional model, and
making such a model an attractive operational tool for long-term simulations.
Due to the implicit scheme for the external computation, however, a new
mode-splitting scheme different from the earlier version (Sheng and Lick,
1980) was designed. Various aspects of the new three-dimensional model are
described in the following.

2. GOVERNING EQUATIONS. The basic equations describing tne large-scale
motion in a large body of water consist of a continuity equation, momentum
equations, conservation equations of heat and salinity, and an equation of
state. Inherent assumptions are: (1) pressure distribution is hydrostatic
in the vertical direction, (2) Boussinesq approximation is valid, and
(3) eddy viscosities and diffusivitles are used to describe the turbulence.
The resulting equations are as follows:

au + 2v aw (1)
x ay a z

a + _ (A + +v-

t \ax y a) 3 z(2
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/2
+vau av +fu laD

3P- -TU -- 1

at ax ay azW pay

az

a" uT {avT 4 awT
at - x y z

as. _ _s +U v__!+aws

at aix ay az

a+ A as aL ( a (6)

P9 (4)

p p(T,S) 
(7)

where x and y are the horizontal coordinates; z is the vertical coordinate

pointing vertically upward to form a right-handed coordinate system witn x and
y (Figure 1); u, v, and w are the three-dimensional velocities in the x, y,
and z directions; t is time; f is the Coriolis parameters; 9 is the
gravitational acceleration; p is the pressure; p is the density; T is the
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temperature; S is the salinity; AH, KMl, and 01 are the horizontal eddy

coefficients; and Av g KV , and OV are the vertical eddy coefficients.

At the free surface, the appropriate boundary conditions are: (a) the

wind stress is specified,

A u AV __ A _ s (8)av - WS

where Tsx and rsy are the wind stresses in the x and y directions respectively

and are functions of the wind velocity at some height; (b) the kinematic

condition is satisfied,

W OIL UIL VIL(9)
at ax ay

where C is the elevation of the free surface; (c) the dynamic condition is

satisfied,

P " Pa (LU)

where Pa is the atmospheric pressure, and (d) the heat flux and salt flux are

specified,

KV IT qs " (T - Te); 0 11
a e az

where T. is the equilibrium air temperature at which the surface heat flux is

zero and i Is the surface heat transfer coefficient.
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At the bottom, the boundary conditions are: (a) a quadratic stress law

is valid:

.n pCULb(12)

whereib is the bottom shear stress vector, p is the water density, is the

skin-friction coefficient, Vb is the magnitude of the bottom current, while

is the bottom current vector; (b) the heat flux or temperature is specified,

KVLT- qb or T Tb (13)

and (c) the salt flux is specified,

! u(14)

In the numerical model, the above equations and boundary conditions are

actually solved in non-dimensional form. In addition, anticipating

significant variation uf bottom topography in the horizontal direction, the

x,y,z coordinate system is vertically-stretched to a x,y,o coordinate system,

such that an equal number of grid points exist in the shallow coastal and the

deep offshore areas (Figure 2). The transformation takes the form:

Sz/h (xy)

where h (x,y) is the local water depth of the basin. Such a transformation

leads to the same order of numerical accuracy in the vertical direction at all

horizontal locations. Variable grid spacing may be used in the vertical

direction to allow finer resolution within'lioundary layers, e.g., the bottom

boundary layer and the thermocline.
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To better resolve the complex shoreline geometries and bottom features, a f
non-uniform grid is often required in the x and y directions (Butler and
Sheng, 1982). This non-uniform grid (x,yz) is further mapped Into a uniform

grid (a,y,a):

x a ax + bx X

y - ay + byYcy  (16)

The resulting equations and boundary conditions in a,y,o grid system in
non-dimensional form are presented in the Appendix.

The system of equations would admit surface gravity waves, internal
waves, inertial waves, and Rossby waves (if i-plane approximation is used).
Various time and spatial scales may exist in the numerical solution, depending
on the grid resolution, the forcing function, and the location. The various
time scales in an enclosed basin have been studied extensively by Haq, Lick
and Sheng (1974).

2.1 MODE SPLITTING. In the present study, numerical computation of the
three-dimensional variables (internal mode), which are governed by slower
dynamics, are separated from the computation of the vertically-integrated

variables (external mode). This so-called "mode splitting" technique resulted
in significant improvement of the numerical efficiency of a three-dimensional
hydrodynamic model for Lake Erie (Sheng et al., 1978) and was detailed in
Sheng and Lick (1980). Basically, it allows for computation of the
three-dimensional flow structures with minimal additional cost over
computation of the two-dimensional flow with a vertically-integrdted model.

2.2 EXTERNAL MODE. The external mode, as described by the water
level (r) and the vertically-integrated mass fluxes (U and V), is governed by
the following equations:

at ax ay/
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a1 _h + V + + E I au + I a
at 14 x sX 31IX H 3aK7 X) Z yy ua y

RE 1 ax ()

IIh4Ux ( ) + ay 1 ) ( ) 0 (70

RB1 h(w) U h - r (+9

where m is the vertical velocity in the x~y,a system as defined by (A.11), RB !(

is the Rossby number and EN is the horizontal Ekman number as defined in the o,
Appendix, rsx and ry are shear stresses at the free surface, while 1bx and
Tby are the bottom shear stresse' which are computed from the
three-dimensional velocity profiles from Equation (A.13), where _ is the
horizontal velocity vector evaluated at a point z+ above the bottom within the

logarithmic layer. Ideally, the drag coefficient C0 ts a function of the
bottom roughness (Zo), the distance above the bottom (z+), and the stability '
of the flow near the bottom (Sheng, 1980):

,B a l(zyu) O a

C + 'n(z.izc+) + ()

)
a53a
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where K is the von-Karman constant and * is a stability function (dusinger,

et al., 1971; Lewellen and Sheng, 1980.)

Sternberg (1972) measured the steady-state flow over a variety of bottom

conditions in both the laboratory and the ocean, and found Ca to be generally

in the neighborhood of 0.004. However, recent studies have found that CO in

the ocean, particularly in the presence of wind waves, may be an order of

magnitude higher or more (Grant, 1981). Recent study of the bottom boundary

layer under current and wave interaction by us using a second-order closure

turbulence model (Sheng and Lewellen, 1982) quantitatively confirmed this

fact. Studies of tidal currents in a shallow estuary also revealed that CO is

on the order of 0.035 (Brown and Trask, 1980).

Bottom friction as represented by Equation (20) allows one to include the

effect of oscillating wave-induced current on the mean current in the

hydrodynamic model, and is believed to be physically more meaningful than the

Chezy type formula used in a conventional vertically-averaged model.

The vertically-averaged model gives results similar to the external mode

of the three-dimensional model when flow is rather homogeneous In the vertical

direction. However, due to its failure to resolve the vertical Ekman layer

and the vertical stratification, It may yield quite different results when

two-layer flow or stratificatiln exists.

2.3 INTERNAL MODE. The internal mode of the flow is described by the

three-dimensional velocities (u, v, w), temperature (T), salinity (S), and

density (p). Equations for T, S, p as shown by Equations (A.6), (A.7) and

(A.8) are solved along with two equations for the perturbation velocities u'

u - U/h and v' a v - V/h:

h h(h
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0v a ' (22
By L + AV (V + )(22)

at Y h oJ

where Bx and By are defined in Equations (A.3) and (A.4), respectively.

These equations are obtained by subtracting the vertically-integrated

equations, Equations (18) and (19), from the u- and v- equations,

Equations (A.3) and (A.4), and hence do not contain the pressure gradient
terms. The computation of these equations are thus not limited by the

stringent numerical time step associated with the fast surface gravity waves.

However, the mode-splitting technique used in this study is somewhat

different from the one used in Sheng et a]. (1978). In that study, the
governing equations for the internal flow variables consisted of equations of

motion and the continuity equation in terms of the differences of velocities

between adjacent grid points ip the vertical direction. As mentioned earlier,

this is due to the fact that an explicit scheme was used for the external mode

in Sheng et al. (1978), while an implicit scheme is used here.

3. TURBULENCE PARAMETERIZATION. Various levels of turbulence

parameterization, fr. , the simple constant eddy viscosity model (Gedney and

Lick, 1972; Forristall, et al., 1977) to the second-order closure model of

turbulence (Sheng and Lewellep, 1982), have been used in hydrodynamic models.
In the present study, a semi-empirical theory of vertical mixing is used. The

effect of stratification, as measured by the Richardson number, Ri, on the

intensity of vertical turbulent mixing is parameterized by an empirical

stability function:

SzRi (23)

Kv - Kvo (1 + ozRi)m2 (24)
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0 a DvO (1 + a3Ri)M3 (Z6)

where Avo, Kvo., and Ovo are the eddy coefficients in the absence of any
density stratification and o1, *2, a3, in , m., and m, are empirically

determined constants. As shown in Figure 3(a). great discrepancy exists among

the various forms of the stability functions determined empirically by various

workers (Munk and Anderson, 1948; Bowden and Hamilton, 1975; Blumberg,

1977). In addition, the critical Richardson numbers, at which the turbulence

is completely damped by buoyancy, given by these formulas are much too high

(.10) compared to the measured value of 0.25 (Erikson, 1978; Lavis

et al. 1981). Much of the discrepancy among various formulae probably

resulted from the difference in numerical schemes used and the different

nature of the water bodies studied. To unify this discrepancy, it is believed

that stability functions determined from a second-order closure model of

turbulence should be used. Donaldson (1973) compared the second-order closure

model with the K-theory of turbulence and obtained the stability functions by
assuming a balance between turbulence production and dissipation, i.e., the

so-called "super-equilibrium" condition. As shown in Figure 3(b), such a
stability function leads to a critical Richardson number much closer to U.25.

In order to utilize these relationships, a turbulence length scale, A, has to

be defined empirically.

4. GRID STRUCTURE. The basic staggered-grid structure used in the study

is shown in Figure 4. The indices i, J, and k correspond respectively to x,

y, and a coordinates. In the x-y plane, the variables u and U are computed at

the mid-points of the two boundaries parallel to the y-axis, v and V are
computed at the mid-points of the two boundaries parallel to the x-axls, and WI

and C are computed at the center of the grid. Shorelines are fitted with a

rectangular grid such that u and U are either zero or prescribed by river

flows along a shoreline parallel to the y-axis, and v and V are zero or

prescribed by river flows along a shoreline parallel to the x-axls. In the

vertical direction, the free surface and the bottom both fall on the full grid

points on which the w's and the shear stresses are either computed or

prescribed.
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5. NUMERICAL ALGORITHMS.

5.1 EXTERNAL MODE ALGORITHMS. Treating all the terms on the left hand

side of the vertically-integrated equations (Equations 18 and 19) implicitly,

the following finite difference equations in matrix form are obtained:

(I +x x + XY) W n + at'n (27)

where

I x t M 6y (28)

and

A 0 oo :)

hjx o oh/0 0 o

0.(o
Dx  (29)

where Ax and Ay are the spatial grid spacings in x and y directions, At is the

time step, and the superscripts n + 1 and n indicate the present and previous
time step of integration. Rewriting Equation (27) and neglecting terms of

0 (at ) yields the following equations:

(I + xx) W- (-y) n + At'D (3u)

(I + x -) W (1)
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These two equations can be solved consecutively in an efficient manner by

inversion of tridiagonal matrices in the x:-direction (x-sweep) and y-direction

(y-sweep). Furthermore, only C and U are solved in the x-sweep, while only r
and V are solved in the y-sweep. This results in a significant saving than
when solving the original Equation (27) with iterative or direct method.

Using th~s implicit acheme, the Courant number based on the wave speed

E(ghmax) at/ax] could be as large as 100, compared to only 1 for the
explicit method. In reality, however, the Courant numbers for our simulation
have generally been between 5 and 10 to maintain sufficient numerical

accuracy. For a detailed discussion on the AUI method for

vertically-integrated shallow water equations, one is referred to another

paper in these proceedings (Butler and Sheng, 1982).

5.2 INTERNAL MODE ALGORITHMS. Due to the extreme shallowness of water
in the coastal area (-2m), the numerical swability associated with the

vertical diffusion term imposes a very small time step (_20 sec) if a

forward-time, central-space (FTCS) scheme is used. To alleviate this proolem,

three numerical schemes were tested: (1) Ou-Fort Frankel Scheme,

(2) Hopskotch Scheme, and (3) fully implicit scheme. The fully implicit

scheme is implemented in this model:

u U + At (Ax  + ,n) Av (u n U /h) (3)

1l

,n+1 in n n n+1_

[Iv my +at (Ay By + At AV -L(vil + h) (
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The bottom friction terms in ooth equations are also treated implicitly.

However, care must be taken to ensure that the vertically-integrated

perturbation velocities at each horizontal location (i,j) always equal zero:

Kmax

*ui 'k 0 0, vt 1k -0 (34)

After the equations for u' and v' 3re solved, equations for salinity,

temperature, and density may then be solved with the same two time level

numerical scheme and implicit vertical diffusion treatment.

A two time level scheme is preferred in this study for the following

reasons: (1) reduction of storage required on computer resource (VAX 11/7/U),

and (2) alleviation of the time-splitting phenomenon that may otherwise result

from a three time level numerical scheme.

A flow chart of the solution algorithm is shown in Figure 5. The model

may be run exclusively in the external mode with a fairly large time step.

The internal mode may be updated every so often as desired or as dictated by

the physical problem of interest. For a detailed discussion on this subject

and a somewhat different treatment of the internal mode, one is referred to

Sheng and Lick (1980). It should be pointed out that the maximum allowable

time steps, for both the external and the internal modes, are now limited by

the ratio between the horizontal grid spacing and the maximum advection speed.

These time steps are generally one to two orders of magnitude larger than the

time step for a simple three-dimensional, free-surface model as imposed by the

propagation of surface gravity waves.

To remove numerical noise in the form of short-wave oscillation (with
wave length typically twice the grid spacing) which may lead to numerical

instability (Orszag and Israeli, 1974), a spatial filter was designed (Sheng

et al., 1978). Such a filter will remove the undesirable numerical

oscillations when identified, but leave the rest of the transient solution
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intact. For most of our coastal applications so far, there was little need to

use the spatial filter.

6. APPLICATIONS.

6.1 SIMULATION OF VICKSBURG TIDAL FLUME. The three-dimensional model

was used to simulate the flow measured in Test 29 of Ippen and

Harlemans' (1961) experiments in the Vicksburg tidal flume. The rectangular

flume was 100 m long, 22.86 cm wide, and 15.24 cm deep, with one closed end

and one open end connected to a large reservoir where sinusoidal tides in the

form of c cos (2wt/T), o - 1.52 cm and T - 600 sec, were generated.

Using Av *1 cm /sec, CO - 0.004, Ax - 5m, Ay - 4.56 cm, and az - 0.3 cm, our

results agree well with the measurements, even when At - 30 sec (Courant

number = 8) was used (Figure 6).

6.2 TIDAL FLOW IN AN OPEN BIGHT. The vertically-integrated version of

our model was used to simulate the tidal flow in a square bight as computed

analytically by van de Kreeke and Chiu (1980). Consider a square basin of

constant depth of 10 m and length of 150 km, with vertical walls along the

West and the South, while open boundaries exist along the East and the North.

The water level at the open boundaries is selected such that the resulting

solutions consist of the sum of two progressive waves propagating in the

East-West direction and two progressive waves propagating in the North-South

direction. The tidal amplitude at the Northeast corner is assumed to be JU cm

with a period of 24 hours.

Using At - 2 hours and Ax - 15 km in our model, the computed water level

and velocity field agree quite well with their analytical results. Figures 7

and 8 represent the water level and velocity field at the instant when c is 0

at the Northeast corner while C is maximum at the Southwest corner.

Considering the fact that the Courant number is 8 in this simulation, the

agreement between model results and analytical results is indeed quite
reasonable.

546

i



6.3 TIME-DEPENDENT CURRENTS IN A LAKE. To demonstrate the effect of

various bottom boundary conditions on the computed water-level and currents,

let us consider a 50 km square lake with a linearly increasing bottom from 2.5

m to 7.5 m. An impulsive wind stress of rx=1 dyne/cm was applied at t -U

along the direction of bottom contours. Numerical results were obtained for

three conditions: (1) three-dimensional model with a no-slip boundary

boundary condition, i.e., u - v = U at the bottom, (2) three-dimensional

model with a quadratic stress law (CD - 0.004) and (3) vertically-integrated

model with the same quadratic stress law.

Results at selected locations are shown in Figure 9. Water level

predicted with the no-slip condition exhibited a much faster decay time and

much stronger bottom dissipation. Hence at the steady state, a stronger

set-up is required to balance the wind stress and the bottom stress. As shown

in Figure 8, vertical velocity structure due to the no-slip condition also

differs considerably from that due to the quadratic stress law. The quadratic

stress law yields a flatter velocity profile near the bottom, resembling a

turbulent boundary layer over a flat bottom. The no-slip conditon, on the

other hand, yields a parabolic profile near the bottom resembling a laminar

boundary layer.

The large difference in the near-bottom currents as computed by the

no-slip condition vs. the quadratic stress law is of particular significance

if one's primary interest is in the transport of pollutants in shallow waters,

where the bottom boundary layer plays a dominant role. The no-slip condition

should not be used unless an extremely fine grid is used to resolve the

laminar sublayer.

The vertically-integrated model produced a water level quite comparable

to the three-dimensional model. However, the vertically-integrated model

cannot resolve the vertical velocity structure as shown in Figure 10.

Various applications of the three-dimensional model to Lake Erie have
been reported before (e.g., Sheng and Lick, 1972; Sheng et al., 1978; Sheng

1980). A rather interesting example is given here to illustrate the A
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steady-state response of coastal waters to wind forcing both in the absence of

and in the presence of a proposed jetoport in the lake (Figure 11). It is

clear from these simulations that the coastal currents are not significantly

affected by the presence of a jetport island. However, in the presence of a

jetport island and a causeway to the shore, the coastal currents are

appreciably modified.

6.4 TIDAL CURRENTS IN MISSISSIPPI SOUN)

AND ADJACENT SHELF WATERS. The three-dimensional model has been

applied to simulate the tidal currents off the Mississippi Coast in an

idealized grid (51 x 51 x 5, with Ax - Ay = 3 km and au - 1/5), as shown in

Figure 12.

Barrier islands (Dauphin, Petit Bois, Horn, Ship, and Chandelier) are

approximately represented by the solid line barriers within the grid. Upen

boundary extends along the South (x - L) and the East (y - L). Initially, the

entire basin is assumed to be quiescent with = - o everywhere. Flow is forced

by the following boundary condition along the open boundaries:

C Cosn It 1+ (35)
- € sin - -, (x)j 3G

where # (x) is computed from

* (x) - (L-x)/gaavg (3b)

where g s the average depth between x and x - L along the open boundary.

Co is diSumed to be 30 cam and T is taken as 24 hrs.

The tidal currents over the entire basin at the end of a 4-day simulation

(flood tide) are shown in Figure 13. The near-surface currents (a - -U.1)

near the Mississippi Sound are much weaker than those in the open shelf

waters. However, near the bottom (a - -0.9), the currents over the entire

basin are quite comparable in magnitude.
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To closely examine the tidal currents within the Mississippi Sound, we

have shown in Figures 14 and 15 the detailed currents at two stages during the

flood tide within a narrow coastal strip including the Sound. It is apparent

that modest currents exist within the major passes except to the west of Ship

Island. Based on our computation, the average flow through the passes is

about 1.8 x 106 CFS, which is very close to the estimate by Escoffier (1978)
based on measured tidal currents. It is interesting to note that the maximum

bottom shear stress occurs within the major passes. During spring tides,

these strong stresses may cause resuspension of sediments in these areas. For

a more detailed description of this application, one is referred to Sheng

(1981).

6.5 WIND-DRIVEN CURRENTS OFF THE MISSISSIPPI COAST. Strong winds

frequently exist in the study area. The winds in the Gulf of Mexico are

predominantly from the North in winter and South to Southeast in summer.

However, winds are strongest in winter from the West and the Northwest.

Currents and water level induced by the strong winds can be much greater than

those induced by tides and hence are of primary interest to us.

As an example, we present the response of the coastal waters under an

impulsive wind stress of 3 dyne/cm2 from the West. For simplicity, adiabatic

boundary conditions with zero surface elevation are applied along the open

boundaries. This eliminates the effect of shelf waves on the circulation, but

allows simulation of response of study area to local wind forcing. To study

the effect of Loop Currents on the coastal circulation, our limited-area model

should be coupled with a larger model which includes the entire Gulf.

The response of the coastal waters to the wind forcing is illustrated by

the time variation of the bottom currents at three locatio, s (Figure 16).
Within the Sound (location B), the local flow has reached a steady state

within an inertial period. At an offshore location (C), the response is

somewhat slower. At location 0 near the open boundary, the response is even

slower as manifested by the distinctive inertial period in its oscillating

bottom current.
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The mass fluxes, near-surfac- currents, near-bottom currents, and bottom

shear stresses caused by the westerly wind are shown in Figure 17. Within the

Sound, the local geometry and bottom topography play the important roles in

causing a predominantly alongshore flow in the direction of the wind. In such

limiting cases, a vertical 2-D (x-z) model may be used for parametric studies

associated with the navigation channels within the Sound.

According to a laboratory flume study on the erodibility of the

Mississippi Sound sediments (Sheng, 1981), it is expected that the bottom

shear stress generated by the strong westerly wind in winter will cause

appreciable resuspension of the sediments. The exchange of water masses

between the Sound and adjacent offshore waters may result in transport of

sediments into or out of the Sound.

Open boundary conditions for a limited-area coastal circulation model

remain to be an unresolved challenge. Boundary conditions along the open

boundaries may be provided from a larger model with dynamic coupling between

the two models (e.g., Sheng, 1975.) Fo our application to the Mlssissippi

coastal waters, tidal constituents from a tide model (Reid and Whitaker, 198Z)

for the entire Gulf of Mexico will be used as boundary conditions. Resonance

effect due to the basin may also be included by using the mass fluxes, in

addition to the surface elevation, as boundary conditions. To allow

disturbances to be propagated into and out of the coastal area without being

reflected back into the area, a modified radiation boundary condition is being

developed. Its successful application to idealized and practical problems

will be reported in a forthcoming paper by us.

7. CONCLUSION. We have presented the detailed formulation of a

three-dimensional numerical model which is capable of realistically describing
the short- and long-term, time-dependent currents in coastal, estuarine, and

lake waters.

Coordinate stretching was applied to the spatial numerical grids in botn

the vertical and the horizontal directions to allow for flexibility and

accuracy in resolving complex geometrical and topographical features. The
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governing equations and boundary conditions were solved in the transformed

coordinates, where the horizontal grids are always uniformly spaced, while the

vertical grid may be non-uniformly spaced. Special Integration techniques

were implemented to allow for numerical time step significantly larger than

that for conventional three-dimensional hydrodynamic models. Various physical

aspects of the model such as turbulence formulation, bottom friction, and open

boundary conditions were also discussed. If desired, the model may be run as

a two-dimensional, vertically integrated model or a two-dimensional,

laterally-averaged model.

Various applications of this numerical model demonstrated the feasibility

of applying it to the various projects within the Army Corps of Engineers -

such as storm surge prediction, sediment transport, dredged material movement,

and maintenance of navigation channels.
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APPENDIX

Governing Equations and Boundary Conditions

To write the equations and boundary conditions in non-dimensional form,

the following non-dimensional quantities are defined:

(u*,v*,w*) a (u,v,wL/H)/Ur

(x*,y*,z*) - (xy,zL/)/L

('CSX. Cy ) =sxsy)/P(Av)rUr

t* - tf, P* - P/PUrfL, 3 PU rfL (A.1)

P* 0 P/Pr, T* - (T-Tr)/Tr, C* g gc/fUrL

A -I/(AH)r, K - KH/(KH)r, D- OH/(DK)r

A- AV/(AV)r K- Kv/(Kv)r, -v/(Dv)r.

where quantities with subscript r are reference quantities, and R and L are
vertical and horizontal length scales.

Suppressing the asterisk (*) for clarity, and transforming the (x,y,z)

coordinate system to a vertically-stretched (sy.o) system, and further
replacing (sy) with (x,y), the equations become:

Continuity

1 u 1 h _ D (A.z)
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i-momentum

b u Rg b u2 +1~ul + h C Ar h Lxb t f 4b

- 4 -" I, __ ()3

E

ILXbX h T

y-mouentum

bV RB bhuv) + h jM uA

- 4 -x pb jy ; r 0 (A.4)

I~ybY IJ~It

4

a + By V AVO
Py 4y hrf



Hydrostat ic

RB

Fr

Energy

aT RB Fa(huT) a(hvT) 2AWT) 'I Ev L 1 a a

at h pcax U~a aa j rT 70-i (icy)

PrH L 7x Tu( 7 ax ( ) (A.6)Y ay

Salt

as !B a(huS) a ) _ ES +

ht h pxax myay aa J Scv H 7- a

+ (_.L)+ --. (h as (A.7)

IIEquation of State-

Ap t  10 * (p-i) ,4 a1 TJ SJ (A.8)
Ii
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where Ax and Ay are defined as: I
d h  (A.9)

Fry o(x a P4+0)]

RB [0 0
Ay : do + ida + op (A.1U)

S2 r- bY by

and where

h h ( Lxb PJyby)

The constants a1j for the equation of state are listed in Sheng (1981).

Px and Ly are stretching rates defined as da/dx and dy/dy, respectively. The
dimensionless parameters are defined as: RB a Rossby number - Ur/fL, EH -
horizontal Ek2an number - (Atlr/fL2 , Ev a vertical Ekman number - (Avlr/fH2 ,

Fr - Froude number a Ur/(gh) , Pr, - horizontal Prandtl number -KK/AH, Prv
vertical Prandtl number - Kv/Av, ScH - horizontal Schmidt number - D/ /AH, Scv
- vertical Schmidt number - Dv/A%, Ur a reference velocity, and the subscript
r indicates reference quantities.

The higher order terms in the horizuntal diffusion terms contain bottom
slopes and/or their products, and hence are generally small compared to the
listed leading terms when H/L (( 1. It should be noted that in deriving
Equations (A.3) and (A.4), the vertically-integrated form of the hydrostatic
equation was substituted into the x- and y-momentum equations. Horizontal
eddy coefficients were assumed to be independent of space and time. In
general, the vertical eddy coefficients are functions of the wind, local

depth, and vertical density gradient.
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The appropriate non-dimensional boundary conditions in the

vertically-stretched coordinate system are as follows:

Surface, a a 0

bo AV &a AV ph at

8T Hh *S = 0, where h - (A.12)

Lv L

Bottom, a - -1

1 bT

*o " ReCDIbvb, -j qb or T - Tb (A.13)

River inflow or outflow

u = u(x,y,a), v * v~x'y,u), T * T(x,y,c), S - S(x.y,a) (A.14)

Shore

U 0,a 0 (A.15)
on on

where i is the velocity vector at the bottom, while Vb is its magnitude.
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Figure 6. Computer simulation of the Vicksburg Tidal Flume.
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Figure 16. Horizontal velocities near the bottom 0o-0.9) as
a function of time for three locktions.
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SOLUTION ADAPTIVE GRIDS FOR PARTIAL DIFFERENTIAL EQUATIONS

Dale A. Anderson
Department of Aerospace Engineering and
Computational Fluid Dynamics Institute

Iowa State University
Ames, Iowa

ABSTRACT. Various techniques for constructing solution adaptive grids used
in numerically solving partial differential equations are reviewed. These methods
include those which directly determine the metrics or coordinates and schemes
which postulate laws of point motion providing a direct calculation of the grid
speed. Examples showing results obtained with each method are presented and
suggestions for possible directions of future work are made.

1. INTRODUCTION. The selection of an appropriate coordinate system and
grid is an important consideration in the numerical solution of partial differ-
ential equations. In most problems, the physical domain is transformed into a
computational domain and the numerical solution is obtained in computational
space. For simplicity the computational domain is usually rectangular and the
mesh points are uniformly distributed. The physical domain boundaries are se-
lected to simplify boundary condition application or provide other advantages in
the computation. The transformation which maps the physical domain into compu-
tational space is the subject of grid generation.

Numerous methods for generating appropriate grids have been proposed. These
methods can be roughly classified into differential equation techniques, algebraic
schemes, and classical complex variable methods. Each of these provides special
properties which may be used to eliminate certain problems. For example a simple
compression mapping can be used to cluster points in a controlled region near a
boundary. This will provide adequate resolution in regions where rapid changes
of the dependent variables occur. A typical example where this type of transfor-
mation is used is in resolving the boundary-layer region in a fluid mechanics
problem.

In computing the numerical so'ution of a partial differential equation, the
first task is that of generating an acceptable grid. Once the grid is established,
the distribution of points in physical space never changes unless the grid is
restructured during the calculation. The disadvantage in maintaining a fixed grid
is that an a priori knowledge of the solution is required. As the solution evolves,
the grid should change to provide adequate mesh point density in physical space
where it is needed. Ideally, the grid should be adaptive. This requires that the
grid evolve as part of the solution to the problem. If an adaptive grid is used,
a numerical solution of a partial differential equation must be computed, and in
addition, the mapping relating the physical and computational domains must be
determined.

A number of techniques for generating solution adaptive grids used in con-
junction with finite-difference methods are reviewed in the following sections.
These techniques are generally of the differential equation type although some may
be classed as hybrid differential-algebraic schemes. Attention is focused on those
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which redistribute a fixed number of grid points to achieve an improved solution
when compared to that obtained on a nonadaptive grid.

2. METHOD CLASSIFICATION. Techniques for constructing solution adaptive
grids can be classified according to the approach selected in constructing the
necessary mapping. An example showing the transformation of the first-order
linear wave equation from physical to computational space will demonstrate this
point. Consider the equation

(1) _u+ c au= 0
at ax

where (x,t) are the independent variables, u is the dependent variable, and c is

the constant wave speed. Suppose a real, nonsingular mapping to computational
space of the form

T- t
(2)

- (x,t)

is used where (E,T) are the computational coordinates. Equation (1) in computa-
tional space becomes

(3) au-+ (at +  a 0
aT t

This partial differential equation is integrated with respect to T to obtain a
solution for u(x,t). The central problem which must be solved to generate an
adaptive grid is to determine the transformation E = C(x,t) as needed in the
integraLion of Eq. (3).

The simple form of Eq. (3) suggests a way of classifying methods in eval-
uating 4 - (x,t). Two terms defining the relation between the physical and com-
putational domains must be evaluated. The first, E , is termed the grid speed.
While grid points in computational space do not move, this is an appropriate name
since the grid speed at any point in physical space is given by

(4) x - x

The metric of the transformation, ' also appears explicitly in Eq. (3). For
transformations of the type given by Eq. (2) we may write

(5)

Two methods of constructing the transformation, (x,t), can now be identified.
The first is to evaluate the metric, E , using some rule and then determine the
new locations of points in the physical plane using this knowledge. Once the new
x locations are known, the grid speed, xr or t, can be evaluated using the time
history of the grid point motion. Techniques using this approach will be referred
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to as type A schemes. The second method, which we shall refer to as a type B
scheme, directly provides the grid speed. This is obtained by postulating a law
or set of laws that control grid motion. The grid speed equation is integrated
giving the new mesh point locations at the same time the governing partial dif-
ferential equation is integrated. Once the new grid is known in physical space,
the metric is calculated.

There are advantages and disadvantages to both approaches. Type A schemes
are physically more obvious. Essentially a new grid can be constructed at any
time during the calculations. On the other hand, the dynamic coupling of the grid
with the partial differential equation through E is usually lagging in time even
though points are precisely positioned as desire. Extension of these schemes to
multidimensional problems is also difficult. Type B schemes are easily used in
multidimensional problems and the dynamic coupling is correct in time. However,
grid point control is difficult and proper laws governing grid speed must be
carefully formulated. Various methods of both types are reviewed in the following
sections, and typical grids produced using these schemes are presented.

3. TYPE A METHODS. The type A schemes can be viewed as regrid procedures
which are employed after each integration step or at the end of any predetermined
number of steps. A number of methods of this type having different degrees of
complexity have been developed by various investigators.

Dwyer et al. [5] developed an adaptive grid procedure for use in solving both
time-dependent and steady problems in fluid dynamics and heat transfer. This
scheme is designed to provide adequate resolution in high gradient regions. To
demonstrate the application of Dwyer's method, consider the physical domain and
the corresponding computational plane shown in Figure 1. Suppose we wish to re-
solve regions of high gradient by placing more points in those regions and fewer
points in regions of low gradient. If the dependent variable requiring better
resolution is the temperature, T, in a heat conduction problem, a point clustering
in high gradient regions can be achieved if the relationship between physical and
computational space is given by

(6) dta I- ds

where s represents arc length along the n - constant lines in the physical domain.

If the maximum value of & is 1, Eq. (6) may be written in the form

S(1 + bi 3TI) ds

(7) x,y,t) a 0
/oma x  

3T)
(I + b i  t d

fo xJ)ds

where Sma, is the largest value of a encountered in physical space, and b is a
constant or a function which permits the gradient sensitivity of the transforma-
tion to be adjusted. If b is zero, the mapping defined by Eq. (7) provides a
uniform distribution of points given by
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(8) (x,y,t) -fo dT

f "mI dT

This provides a grid where the point locations in physical space are at surfaces
of constant difference in the dependent variables. Dwyer notes that this proce-
dure can lead to difficulties in zero gradient regions where large values of the
second derivative term exist. This problem can be avoided by adding a second
derivative term to the transformation defined by Eq. (7).

Physical coordinates are recovered by replacing the integrals in Eq. (7)
by simple quadratures. For a given value of E. the correct value of s is obtained
by integrating and interpolating. Once the physical coordinates are computed, the
metrics of the transformation can be obtained using finite differences and the
grid speed is determined by using a backward difference.

Figure 2 presents results for a two-dimensional transient heat conduction
problem at an intermediate time. In this problem, the initial temperature was
set equal to zero everywhere. The temperature was impulsively raised to a constant
value along the lower boundary. As time progresses, heat flows into the domain
from this boundary creating large temperature gradients there. The grid structure
shows the clustering of points in this high gradient region and the temperature
distribution shows that isotherms correspond to the grid structure as desired.

*Klopfer and McRae [8] developed a method of adjusting mesh point locations
while calculating the flow in a shock tube. The mesh was adjusted in an attempt
to reduce the error in the numerical solution for the flow. The governing con-

servation equations for flow in a shock tube written in computational coordinates

(E,T) are

(9) (x& ) T + (C X T ) f 0

where

(10) w- (p,pu,e) , = [pu,p+pu2,(e+p)u]

In these expressions, p is the density, p is the pressure, u is the velocity, and
e is the energy. If a second-order finite-difference scheme is applied to Eq. (9)
and the resulting discretized equation is expanded, the modified partial differential
equation is obtainei. If the first truncation error term is retained, this
expression is of the form(x + + x+W)
(11) (xew) . + ? -x +A ( -x) w)j¢ o

The flux qualtity is altered by the error term given by

(12) R 6T
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This error term can be reduced by changing the mesh point locations if the point
motion is driven by the error. This error term has three scalar components due
to each of the scalar conservation equations: continuity, momentum, and energy.
Define a scala_ cluster function, r(E), composed of a weighted sum of the scalar
components of R.

(13) r( ) = S[Ar + Br2 + Cr3]

In this expression S is a smoothing operator and A, B, and C are functions which
can be adjusted to provide different weighting to the respective error components.
The adaptive grid is constructed by assuming that the metric, xV is proportional
to r(Q). In particular Klopfer and McRae used the relation

(14) x =(x&)ave[(I - r( )/r max)(K ax- K min) + Kmin]

where

(x& ave = average on the mesh

r ma= max[r( ) ]

and Kmax and Kmin are constants which control the amount of clustering. Once the
metrics are defined, the physical coordinates are recovered by integrating Eq. (14),
and the grid speed, xT, is obtained by using a backward difference.

Figure 3 shows a comparison of results for a shock tube for both a fixed and
an adaptive mesh. In both cases smoothing was added to reduce oscillations, and
MacCormack's second-order method was used to calculate the solution. The results
show the smooth expansion wave moving to the left into the high pressure region,
and the shock wave moves into the low pressure side with the contact surface
separating the fluid originally on each side of the diaphram at t = 0. The clus-
tered results show no oscillations at the shock or contact surface demonstrating
the effectiveness of the clustering technique. It should be noted that as many
as five or six points are used to define the shock and contact surface so the
discontinuities do not appear between two mesh points.

The two methods reviewed should be referred to as error reducing schemes.
No attempt has been made to show that adaptive grids produced are minimum error
grids. If formal minimization techniques are used to produce the grid, the grid
would be a minimum error solution consistent with the error measure used. Sev-
eral authors have used this approach. Yanenko et al. [15] constructed an
adaptive grid by minimizing a linear combination of variables related to mesh
quality. The first quantity was mesh distortion and is a measure of the non-
orthogonality of the mesh. The second term provided an estimate of how well the
mesh moved with the fluid and the third provided a reduction in mesh spacing in
high gradient regions. Ablow and Schecter [1] solved the two-dimensional Poisson
equation using an adaptive grid. The grid was obtained by minimizing a sum of
squares of the independent and the dependent variables. The nodes are distrib-
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uted creating an equally spaced mesh that is as nearly orthogonal as possible
consistent with the solution surface.

Brackbill and Saltzman [3,4] developed a grid generation scheme designed to
optimize a combination of smoothness, orthogonality, and cell volume. The measure
of smoothness used in their scheme is given by

(15) Is - J [(Vl)2 + (Vr) 2]dv

and the orthogonality and cell volume measures, respectively, are given by

(16) I f (Vt . Vn)2 J3dv

and

(17) Iv wJdv

In these expressions, (E,n) are the usual computational coordinates, J is the
Jacobian of the transformation, and w is a weighting function used in the cell
volume integral. A linear combination of these integrals is minimized in the
form

(18) I - I + X I + X I

where Av > 0, A > 0 are undetermined multipliers.

In using minimization of Eq. (18) to develop an appropriate grid, the Euler
equations must be derived. Even for a two space-dimension case these equations
are formidable. While the Euler equations for typical two-dimensional problems

are not repeated here, the details can be seen in the work by Brackbill and
altzman. The Euler equations are solved in conjunction with the governing
partial differential equations of the system to yield a solution for the entire
problem.

Minimization of I provides a niceelliptic grid generator assuring that
certain smoothness, orthogonality, and error reducing properties are built in.
There are some practical problems associated with this approach. For a truly
adaptive grid, the weighting function in Eq. (17) must be solution dependent. At

this time it is not clear what this function should be. The complexity and com-
puting time requirements when a truly adaptive problem is attempted are also
matters of concern. Simpler methods of obtaining an acceptable grid using mini-
mization techniques are desirable. Clearly a less romplicated measure of mesh
quality is needed.
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4. TYPE B METHODS. Type B schemes directly establish the grid speed term
in Eq. (3). This grid speed is then integrated and the metrics of the transfor-
mation are calculated.

The most difficult part of constructing these methods is developing the
rationale for the grid speed equation. Hindman et al. [6] derived a grid speed
equation by using the time derivative of the Thompson scheme [13]. The Thompson
scheme may be written

V 2E .P
(19) 2 Q

where the boundary point coordinates are given and the interior distribution is
determined by the simultaneous solution of the system given in Eq. (19). The
forcing functions (P,Q) are used to concentrate grid lines where desired. The
system of equations governing the mapping is usually written using the physical
coordinates as the dependent variables and may be written

G(x) - 0
(20)

G(y) = 0

where

(21) 2 22 y92 1 Pa Oaa2 kan n2 / n

with

2 2
Sx n +y n

(22) 8  xxn + YEN

= x2 + y2

and J again represents the Jacobian. If the time derivative of the transformation
differential equation [Eq. (20)] is formed, a system of equations results and may
be written

(23) IS]1 ar

where

* T
z (x , y )T

(24)

r = - (P x + Q lXn, PY& + QTyn)
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and S is a matrix which includes spatial partial derivatives. The solution of
Eq. (23) provides an expression for the grid speeds. In the initial work, P and
Q were set equal to zero and numerous time-dependent solutions of fluid flow
problems were computed. This technique was used with great success on a series
of problems ranging from the classical inviscid supersonic blunt body problem to
the diffraction of a shock wave passing over a ramp. Figures 4 and 5 present the
physical domain and grid generated for these two cases. Unfortunately this tech-
nique is adaptive only in the sense of accommodating boundary point motion. If
both P and Q are zero, no way of including the influence of the changes in the
interior solution can be incorporated in the grid point motion. Recently, Hindman
[7] has been computing flow field solutions using a grid generation scheme given
by Eq. (23) where P and Q are functions of the computed solution. This creates
an adaptive grid generator which includes the influence of both changes in bound-
ary point location (moving boundaries) and changes in the interior solution.

Recently Rai and Anderson [10,11] and Anderson and Rai [2] have constructed
an adaptive grid generator based upon a gravitational analogy. In order to demon-
strate the basic idea, consider a one-dimensional problem with independent vari-
ables x and t. Since we obtain the solution by time integration of the partial
differential equation, the grid speed is also easily integrated and the new grid
positions obtained. In order to obtain the grid speed, we require the error, lel,
at each point and define an average error, lelave , over all points. If lel is
larger than Jef ve at a given location, we expect the local error in the solution
to be reduced it more points are used. Likewise, if the difference between the
local and average error is small, then fewer points are needed in a given region.
Since the total number of points is fixed, this implies a contraction or stretching
in certain areas of the physical domain. One also expects that the influence of
one point on another diminishes as the distance between the two increases. With
this in mind, the grid speed in computational space, t, may be written as

Kel - Jelave ii.el -lelave(- &di =K n - n i

(25) J-i-l ri,j j=l rij

i = 2,3,. • .,N-l

and the grid speed in physical space is given by

(26) (x ) i = (-Ct) /(Cx)i

In these equations, ri, is the distance between points i and J in computational
space, K is an empiricA constant which must be adjusted to regulate the maximum
grid speed, and n is a power which is adjusted to provide the desired radius of
influence for a given point. The grid speed induced anywhere by a given point
is proportional to the excess error at the point and is attenuated by the distance
to that point raised to a power. The philosophy embodied in Eq. (25) may be
interpreted as assuming that a numerical solution on a grid is the best when the
error at each point in the grid is the same constant value. 4

An example demonstrating the application of this method is provided by the
viscous Burgers' equation
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(27) Ut + uux  1 Uxx

with initial conditions

I x -0

(28) u(O'x)

anZ boundary conditions

u(t,O) 1
(29)

u(tl) = 0

The steady-state solution of this problem is given by

(30) U = U tanh[ -- (1 x)

where

(31) Re = 1/

and ^u is a solution of the equation

(32) = exp(-iRe

Since the exact solution is known, the accuracy of the numerical calculation is I
precisely known, and the value of the adaptive grid scheme can be judged.

Figure 6 shows the solution error comparison for a fixed and an adaptive 11
point grid. In this example the error used in driving the grid was assumed to
be ug. While this does not correspond to the truncation error produced by using
the second-order MacCormack method used in this calculation, a significant
reduction in error is obtained using the adaptive grid. It is interesting to
note that errors are reduced at the right side of the physical domain where large
gradients exist while slight increases are observed at the left. This should be
expected since the total number of grid points is fixed and the mesh spacing
must increase at some points and decrease at others.

When the derivatives of the dependent variable are used to evaluate the lel
terms required in the grid speed equation, they are formed using finite differ-

ences. To avoid noisy estimates, particularly when second or third derivatives

are used, the solution must be smoothed before the derivatives are formed and
used in the grid generator. Usually a three point average is sufficient although
any smoothing operator will work.
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This technique for creating an adaptive grid is easily extended to two
dimensions. In this case the grid speed, tt, is given by Eq. (25) with lel set
equal to Iu~j or higher derivatives of u, and the grid speed, nt, given by a
similar equation with u or higher derivatives used for the error estimate. The
assumption that the grid speeds depend only upon errors in their respective
directions provides for easy application of the method. As in the previous exam-
ple, the contribution of each mesh point must be included, and as a result, the
grid speed in either direction is obtained by summing over both i and J.

In the interest of brevity, details of the two-dimensional Burgers' equation
calculation are not presented here. However a grid produced for the two-dimen-
sional version of the example presented above is shown in Figure 7. In this case,
the large gradient regions are at the right and upper part of the physical domain,
and the adaptive grid shows a clustering of points in these regions. While error
curves are not included, reductions similar to those calculated in the one-dimen-
sional example are obtained. In addition to the simple examples presented here,
a number of fluid dynamic problems have been solved. These include incompressible
laminar boundary-layer flow, the supersonic inviscid blunt body problem, and the
solution for supersonic inviscid flow over a pointed wedge with a detached shock wave.

In another recent paper, Rai and Anderson [12] have developed a technique
for locally aligning the physical mesh with high gradient regions. This particular
technique is most useful in computing solutions to hyperbolic systems of partial
differential equations which include surfaces of discontinuities in the dependent
variables. The applications of the original technique were to problems involving
shock waves in high speed fluid flow and that development will be presented here.

The presence of shock waves in supersonic flow creates problems for the
computational fluid dynamicist because shocks represent discontinuities in the
dependent variables when the inviscid equations of motion are considered. Lax [9]
showed that shock waves could be "captured" as part of the solution using no
special treatment if the conservative form of the governing partial differential
equations is used. The usual conservation-law form of the inviscid equations for
a steady supersonic flow is

(33) ax a

and

where both E and F are vectors. When shock waves are captured using finite-dif-

ference methods, the solution usually oscillates at shock waves because of the
discontinuous nature of the dependent variables. Since a solution with a shock
wave mathematically represents a weak solution of Eq. (33), the condition which
must be satisfied at the shock may be written (see Witham [14])

(34) [E]cosa 1 + [1]cosa2 - 0

where the square brackets represent the jump in the function across the discon-
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tinuity, and cosat and cosa are the direction cosines of the normal to the
discontinuity witi respect io the x and y axes. Figure 8 identifies the normal
and the angles a and a If an adaptive grid is used, which aligns with the
shock in such a ay thai a2 = 90.' the remaining condition that must be satisfied
becomes

(35) []cosaI = 0

Since cosa 1 0 0, the jump in E is zero which simply requires that E be continuous
across the shock wave. A scheme which aligns one of the coordinates with the
shock wave can be constructed. If a series of points in a grid is considered as
in Figure 9, a scheme which causes mesh alignment with high gradient regions
results if the grid speed at a point C is given by

Kih Io1h Io(-I) k

(36) 0 =

oC

where

k l , sgn(hC/h,)sgn(n
O  - nC) < 0

2 , sgn(h /h )sgn(nO - nC ) > 0

and h is any flow variable such as pressure or density which is used to identify
high gradient regions. The grid point speed at any point C is determined by the
gradient of this flow variable. The effect of this is to produce a rotation of
the line segments until they become locally parallel to the maximum gradient
lines.

To demonstrate the effectiveness of this technique, a smooth function with
a very high gradient region was used to drive the grid. Since the gradient infor-
mation, hr, h_, is known analytically, and the high gradient area is also known,
this provides a good test of the shock aligning scheme. Figure 9 demonstrates
the shock alignment scheme for such a unit problem. The dark area is the zone
where high gradients exist while the h function is constant in the rest of the
domain. The alignment of the grid in the high gradient region is apparent. It
is also important to notice that grid alignment is a very local effect.

Another demonstration of the effectiveness of a shock aligning grid is
given by the calculation of a flow field due to a straight oblique shock in a
uniform supersonic freestream. Figure 10 shows the shock wave location and
shows the position of the fixed grid also used for a comparison. The flow is from
the top of the figure toward the bottom at a freestream Mach number of 2.0 with
a shock wave angle of 50*. The solution to this problem was obtained numerically
as the time asymptotic limit of an unsteady flow. The two-dimensional time-
dependent equations of motion were solved in conjunction with the grid speed
given in Eq. (36), and the resulting mesh and shock location are shown in Figure
11. The nearly perfect alignment of the shock and the grid are apparent.
Figures 12 and 13 show the pressure through the mesh at y = 0.208 and 0.0,
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respectively. Again the effect of the alignment is clear. No oscillations occur
in the grid aligned results while the usual dispersive behavior is evident when
a standard fixed grid is used.

5. CONCLUDING REMARKS. A number of adaptive grid techniques which are cur-
rently being used or have the potential for use in solving practical problems
have been reviewed. These methods include schemes which directly determine either
physical point location or transformation metrics (type A) and those techniques
which directly provide the grid speeds (type B). Techniques used to develop these
methods range from variational approaches to ad hoc schemes which largely employ
physical intuition.

Having reviewed some of the more promising methods for generating adaptive
grids, a few comments on the direction of future work seem appropriate. The
direction of future work as perceived by any reseacher in this area depends upon

that person's expevience and the constraints placed upon his efforts. The engineer
or scientist attempting to solve practical problems, using numerical methods, does
not ha..ve the luxury of either unlimited computer time or the use of an infinite
number of mesh points. We should rule out those schemes which require excessive
time to use and support techniques which are more economically employed.

Among those schemes reviewed in this paper, the methods where a functional
minimization is employed become unduly complex when the Euler equations are
solved in conjunction with the original partial differential equation. The time
required to generate the mesh may be larger than or at least a large fraction of the
time required to solve the original equation. These methods do have a firm
mathematical basis and permit one to exercise positive control over those elements
included in the definition of grid quality employed. For this reason, work using
this approach is valuable.

The techniques which provide the grid speed directly have a definite advan-
tage because they are easily used in multidimensional problems. Since the goal
of most investigators is the construction of methods for use in three-dimensional
problems, this seems to be a definite plus. The disadvantage is that these tech-
niques are approximate methods largely based upon intuition. Even though the
simple grid speed methods reviewed in the last section are error reducing, a
better foundation justifying their use is needed.

Perhaps the next generation of adaptive grid schemes will result from studies
using minimization techniques. These studies can be used to construct simplified
approaches which yield nearly the same results but are much simpler to implement
and more economical to use.

One of the areas deserving a concerted effort is that of defining grid
quality. Grid quality treated in adaptive grid work is usually concerned with
improved resolution of some physical event or with reducing errors in the solu-
tion. The area of error estimation when using finite-difference techniques is
very important. Clearly, if better error estimates are available, better grid
systems can be generated.

As a final comment, the adaptive grid field is new. Everyone should be
encouraged to explore new ideas for generating adaptive grids with the goal of
introducing better techniques for computing solutions to partial differential
equations.

The support of this work by NASA under Cooperative Agreement NCCI-17 is
gratefully acknowledged. 586
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INTERACTIVE DESIGN OF LASER ELECTRODES USING

ELLIPTIC GRID GENERATION AND SEMIDIRECT/MARCHING METHODS

Patrick J. Roache
Ecodynamics Research Associates, Inc.

P. 0. Box 8172
Albuquerque, New Mexico 87198

ABSTRACT. This paper describes a computational effort to develop computer
codes for rapidly and accurately modeling the electric fields within laser cavi-
ties. Semidirect/marching methods are used both for the generation of two-
dimensional boundary-fitted grids using the elliptic generating equation approach,
and for the solution of electric field problems in those coordinate systems. The
efficiency of the semidirect/marching methods makes possible interactive design
of the laser electrodes using a modest computer. Also described are techniques
for high-order accuracy, a method for precise grid control at interior points,
and applications to the elliptic grid generation problem of computer Symbolic
Manipulation.

1. INTRODUCTION: THE LINEAR AND NONLINEAR LASER PROBLEMS. The objective
of the computational effort described herein was to develop computer codes for
rapidly and accurately modeling the electric fields within lase- cavities. These
codes should be fast enough to make the interactive design process practical,
and accurate enough to resolve the maximum electric field, which is an impor-
tant limiter of the power output. The designer should be able to perturb the
laser operating parameters and/or the electrode geometry, and quickly obtain
new solutions.

Both the linear and nonlinear electric field problems are of practical
interest to various laser concepts. Our original efforts were directed towards
the nonlinear problem in pulsed electric lasers. In the design of electron
beam lasers, it is desirable to have a nearly uniform energy deposition through-
out the cavity. This energy deposition is governed by the solution of the non-
linear elliptic equation for electric potential #, given by

V * cV* = 0

where the conductivity a is a nonlinear function of the electric field E = Ve.
(For the linear problems, a is constant.) The solution of this equation for a
reasonable grid resolution in two dimensions is a time consuming effort using
conventional methods (ref. 1). For our initial studies, the ionization S of
the external electron beam gun was modeled empirically, following ref. 2, by
the following equation.

S exp(-yx) atan (y) - atan Y-

where y = E/2.V. The electron beam has a voltage V and a width 2a located at
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x = 0 between y = -a and y = +a. From the same reference, the nonlinear con-
ductivity a is given by

= C -E 0 45 S05, c = 0()

The laser cavity was first modeled in a cartesian coordinate system with
straight electrodes. In this system, we could obtain completely converged non-
linear solutions in approximately 5 second on a 31 x 31 grid using a time-
shared CDC 6600 Computer. This is two orders of magnitude faster than the
computer time necessary to solve the problem using a triangular finite element
system.

We have also used other nonlinear relations for conductivity a, and are
currently working on the use of Monte Carlo calculations for a. Although the
nonlinearity adds difficulty, the more significant problem arises when the
designer attempts to solve the problem with general electrode shapes.

We immediately dismissed the approach of fitting a general boundary shape
into a cartesian grid using "partial cell" formulas, for reasons of accuracy.
Since the quantity of interest is a derivative of the solution, and since its
maximum value occurs on the surface (always, for the linear problems) it was
clear that "partial cell" formulas would not provide sufficient accuracy. A
boundary-fitted nonorthogonal coordinate system was the obvious choice.

2. ELLIPTIC GRID GENERATION BY SEMIDIRECT METHODS. We adapted the ap-
proach pioneered by Thompson et al. (ref. 3), using elliptic generating equa-
tions to construct the nonorthogonal grid. Two equations for the new coordinates

and n, are first written in the "physical" or original coordinate system
(usually cartesian) where we know the form of the equations governing the
electric field. The two equations for &(x,y) and n(x,y) are linear but have
the same difficulty as the original problem, i.e. solution in x and y would
require "partial cell" formulas. This is avoided in the Thompson approach by
reversing the dependent and independent variables. All calculations are now
done in the simple cartesian coordinate system in the transformed plane (c,n),
but the transformed equations are now nonlinear (quasilinear).

The two coupled nonlinear equations are solved in the transformed plane

(Un) for the physical coordinates (x,y).

L(x) = O,L(y) = 0

where, fore = x or y,

L(e) F - 20e + ye

The coefficients are nonlinear functions of x and y. See Thompson, et al.
(ref. 3) for details, and for the use of additional nonhomogeneous terms P and
Q for coordinate adjustments.
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In customary usage, these equations are solved by point or line iterative
methods, which are usually slow. In our work, we use semidirect/marching
methods to solve the grid equations, and then to solve the electric field
equation in that grid.

3. SEMIDIRECT/MARCHING METHODS: THE GEM CODES. Semidirect methods are
rapid finite difference methods for solving various steady-state and slowly
varying time-dependent nonlinear problems. Fast elliptic solvers are used to
solve linearized equations directly, which are then iterated to solve the non-
linearity. Applications of semidirect methods to problems, many in fluid
dynamics, are given in ref. 4. For the nonseparable partial differential
equations of interest here, the fast elliptic solver used is some variation
of marching methods for elliptic equations. The algorithms involved have been
described in detail (ref. 5) and timing and accuracy tests of a particular
software realization of the marching methods, called the GEM codes, have been
reported (ref. 6).

Although stabilizing schemes exist (ref. 5,6), as a practical matter, the
marching methods depend on a favorable cell aspect ratio AC/An to stabilize
the inherently unstable spatial marching procedure. They are thus well suited
to problems with a grid refinement in one coordinate in the transformed plane.
The marching methods are not suitable for problems in which there is a signifi-
cant grid refinement in both coordinate directions in the transformed plane.
However, for many practical problems, they are very well suited.

The advantages of the marching methods are their generality and speed.
Unlike "fast Poisson solver" algorithms such as FFT or odd-even reduction, the
marching methods (1) do not depend on separability of the coefficients, and
(2) can treat the 9-point operator directly, even for nonseparable stencils.
Both these advantages are pertinent to nonorthogonal grid problems, not only
in the solution of the grid by elliptic pde's, but also in the solution of the
physics (in the present case, the electric field equations) no matter how the
non-orthogonal grid is generated. As for speed, the marching methods will ini-
tialize in order (M3) operations for an MxM cell problem, and will solve repeat
solutions in the optimal order (M2) operations. For large two-dimensional prob-
lems using a 5-point operator, repeat solutions by actual timing tests are
obtained (ref. 6) in the equivalent of 2 point SOR iterations including con-
vergence testing.

4. APPLICATION TO ELLIPTIC GRID GENERATION EQUATIONS. The semidirect/
marching methods are particularly well suited to the solution of the elliptic
grid generating equations, provided that the cell aspect ratios are favorable.
In our semidirect approach, the two equations are first linearized about some
initial guess for the grid, giving values of 0o,, etc. We then solve a
sequence of linear problems, indicated by

LO(ek) = S(ek '1)

where LO is based on the initial guess ao, sO, etc. and S is defined by

S(e) - O)e - 2(s-sO)eEn + (y-yO)ennI
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If immediate updating of the coefficients were used (true Picard method),
the coefficients in LO would be re-evaluated at each iteration and the GEM
solution would be reinitialized, requiring order (M3) operations for each
iteration. Instead, we attempt a single initialization of the GEM code using
a quasi-Picard method. Depending on the adequacy of the initial guess, this
single initialization may be adequate, or we may require reinitialization
during the solution process. The decision to reinitialize is automated and
is based on the requirement for at least an 80% reduction in the maximum change
in x and y at each iteration. Also, in the iterative design process, the ini-
tialization from a previous design (i.e. a previous laser electrode geometry)
can be used for the next grid generation.

The semidirect/marching methods are well suited to this problem of ellip-
tic grid generation for two reasons. First, although two coupled nonlinear
equations are used, there is only one matrix for the two equations. Thus,
only one matrix initialization is used, and only one set of coefficients must
be stored. Second, although the equations are nonlinear and coupled, they are
not coupled in the boundary conditions. This adds to the speed of the itera-
tive convergence process. (For the Navier-Stokes equations, the coupling of
the boundary conditions leads to time-like iterative behavior, which is com-
paratively slow; e.g. see refs. 4,7.)

5. ACCURACY AND TIMING TESTS. For moderate geometries, the semidirect/
marching methods give solutions for the grid in typically 8 to 10 iterations,
requiring less than 4 seconds on a CDC 6600 for a 31x31 grid with poor initial
guesses. We use an unusually tight convergence criterion of 6x,6y - 10- 5,
because we are interested in using Richardson extrapolation to fourth order
accuracy for the solutions of the physicsequations; this requires no oscilla-
tions in the solution for either the coordinate system or the physics equations
(ref. 8). The number of iterations required is not a strong function of grid
size, and the marching error is tolerable for most problems encountered so far
(of the order 5xI0 -6 for a 31x61 grid). As yet, we have had no experience with
coordinate system control using the P and Q terms (ref. 3). Fortunately, many
geometries of practical interest to the electrode design area are convex in the
region of most interest and do not require additional coordinate control. The
present code is being used for interactive computer design of several laser
systems.

The electric field solutions are also obtained with the semidirect/marching
methods once the coordinate system has been generated. For linear field equa-
tions with 1-point or 2-point derivative bourdary conditions, the equations are
solved directly. For the nonlinear field equations and for 3-point derivative
boundary conditions, iteration is required. A representative problem is solved
in the order of 10 iterations, requiring less than 5 seconds on a CDC 6600.
However, we have encountered nonlinearities in a which required 50 iterations.

The linear problem is of practical interest, and has been used as an ac-
curacy test by comparison of the computed results with those of the Rogowski
electrodes, obtained by conformal transformation methods. With boundary points
equidistributed in arc length, we predict the E-fleld to plotting accuracy in a
25x25 grid. Using a distribution of boundary points weighted by surface curva-
ture, we have obtained plotting accuracy in a 13x13 grid.
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It appears that a good multigrid code using nonlinear grid interpolation
(FAS) can achieve the same level of efficiency as the semidirect/marching
methods for the nonlinear problems (ref. 9). For the linear problem, the
marching methods as embodied in the GEM codes are the fastest. However, they
are limited in resolution to about a O0x10O grid with favorable cell aspect
ratios. More importantly, they are attractive in 3 dimensions only for prob-
lems which are separable in the third coordinate so that a FFT can be used
(ref. 5). The marching methods appear to vectorize well, especially for re-
peat solutions, for the 5-point operator. On a vector machine, 9-point opera-
tors would be best treated iteratively by lagging, as is customarily done
with linear iterative methods. The vectorizing of multigrid codes is an open
question at this time. The comparison of marching methods, multigrid methods
and the simpler fully vectorizable iterative methods (such as hopscotch SOR)
on vector machines will be a complicated job, dependent on the particular
machine architecture, the problem size, and the coding details. We intend to
include options for the use of various solvers in our laser codes in the near
future.

6. CONTINUATION METHODS FOR DIFFICULT GEOMETRIES. Good initial conditions
for the grid can be a problem, whether the grid generating equations are solved
by semidirect/marching methods or by more conventional iterative methods. Par-
ticularly, for slit-like geometries, initial conditions obtained by simple
interpolation in the transformed plane can give crossed coordinate lines and
negative Jacobians, which can prevent iterative convergence of the nonlinear
problem.

We have developed two continuation methods for this problem. Both attain
the final solution in N continuation steps (where N is selected by the code
user). The weighting function W varies from 0 to 1 for the sequence of problems,

W = 0, 1/N, 2/N, .... (N-I)/N, 1.

The first continuation method builds up to the true boundary conditions.
With B = x and y boundary conditions, the continuation method is

Bk = (1-W)B ° + W.Btrue

where B° is some trivial initial geometry, such as a rectangle.

The second method builds up to the true generating equations, and was
suggested by Maliska's work (ref. 10) using point SOR for the solution. The
coefficients a, B, and y are built up from

wk = W-8 true, Ak = (I-W) + W-Atrue

where

A = a and y.

This starts from the linear, decoupled problem

x + x =0

Y + y+ n = 0
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We have had success with both methods, but the second is preferable. It is
more systematic, and avoids some clumsy scaling problems of the first. For a
rather severe slit-like laser geometry, only two continuation steps were re-
quired to solve the grid. (Note that for very mild problems, this first con-
tinuation step might produce an adequate grid, and could utilize any fast
Poisson solver for separable equations.)

7. SOLUTION OSCILLATIONS NEAR GRADIENT BOUNDARIES. An illuminating
behavior arose in the application of symmetry boundary conditions to the elec-
tric field equations. For symmetry at 0 = , the transformed equation requires

= 0- i )/J = where J = Jacobian.

The marching code GEM requires one-sided differences for or because the boun-
dary conditions must be separable in the march direction. Depending on the
curvature at the boundary (the sign of a) and the march direction, this can
be analogous to downwind differencing along the boundary, and can produce
oscillations in the solution of the physics equations. In analogy with the
well-known fluid dynamics problems, we would anticipate that other workers
may have encountered this behavior using centered differences for 0."

The cure, which almost certainly has been applied in practice elsewhere
although not reported (nor perhaps recognized) is to have a nearly orthogonal
grid near symmetry and other gradient boundaries, giving a = 0. (One could
also set a = 0 by reflection (ref. 10) but this gives a discontinuity in the
grid which will slow the truncation error convergence.)

In the GEM solutions, true second-order accuracy is obtained by a ec:erred
correction approach, lagging the difference between the one-sided and centered
forms for * . It is even more robust, for geometries in which 8 might change
sign along he boundary, to lag the entire 0n, along with the deferred correc- -
tion for the 3-point 0, and any nonlinearities, and this is now our standard
procedure. Note, however, that the GEM code now cannot be considered a direct
solver for gradient boundary conditions in a nonorthogonal grid; this is a code
limitation, since marching methods (i.e. the algorithm) can be adapted to solve
this problem directly.

8. TECHNIQUES FOR HIGH ACCURACY SOLUTIONS. For the laser design problems
which we have encountered to date, moderate accuracy has been quite adequate.
(The more important problem has been resolution of the peak E-field, and we
expect to soon be working on a solution-adaptive grid generation method to
address this problem.) For other applications, high accuracy may be desirable.
Obtaining high accuracy solutions in boundary-fitted coordinates requires
special comment.

Obtaining high accuracy solutions generally involves using high-order dis-
cretization and/or systematic grid refinement. There are remarkably few pub-
lished studies of strongly multidimensional problems which do a convincing job
of establishing accuracy, even for problems defined in cartesian coordinates.
For general nonorthogonal coordinate transformations, we need a systematic

I method for refining this mesh and assuring smoothness of the mesh. This
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requirement is satisfied by Thompson's elliptic generating approach (and by
simple analytic stretches, etc.).

We consider here three techniques for obtaining high-order solutions in
general nonorthogonal grids; Richardson extrapolation, the direct use of high
order equations, and deferred corrections.

Richardson extrapolation must be applied with great care. Incomplete
iteration noise and machine round-off error will be magnified by the extrapo-
lation, and the enhanced order of accuracy will not occur near boundaries unless
consistently-ordered discretizations are used at boundaries. However, when
carefully implemented (ref. 8) this technique does give high order accuracy in
nonorthogonal coordinates, and is not troubled at all by the cross-derivatives.
It gives O(A4 ) accurate solutions only on the subgrid of the finest grid cal-
culated, however. It may be possible to obtain the O(A4 ) solution on the finest
grid by interpolation; this approach remains to be worked out and verified.

The direct use of high-order equations, either conventional or "compact"
stencils, gives high order solutions on the full grid. However, there is
trouble in formulating stencils for cross-derivatives and near-boundary points
in nonorthogonal coordinates. Also, the iterative solution methods may deter-
iorate with high-order stencils. (They should never be used directly in marching
methods, since the effect on the march stability is disastrous; see ref. 5.)
The deferred correction technique avoids this latter difficulty, and further
provides a convenient measure of truncation error convergence. However, the
difficulties with the cross-derivatives remain.

To our knowledge, ref. 8 (utilizing Richardson extrapolation) presents the
only multidimensional O(A4) solution in a nonorthogonal boundary-fitted grid.

9. PRECISE COORDINATE CONTROL AT INTERIOR POINTS. It is often desirable
to precisely control the position of grid nodes at some interior points. In
laser calculations, the electric field can be affected by the presence of di-
electric materials in the cavity, and calculation accuracy could be enhanred if
the grid points were on dielectric boundary. Such precise control is simply
achieved by algebraic (e.g. ref. 11) and ad hoc grid generation methods. In
the elliptic generating technique, the "tuning" of the nonhomogeneous terms P
and Q as in ref. 3 provides considerable adjustment of the grid, but not precise
control.

Precise placement of grid points is easily achieved by partitioning the
grid solutions along the desired interior boundary. This can be implemented
either by patching separate solutions together, or by locally defining the
discretized problem to be the identity equation, i.e. replacing the 9-point
stencils for the x and y differential equations by

x = Xib and y = Yib'

where "ib" refers to the desired interior boundary. Patching results in a
timing and storage penalty in the GEM codes, but the patch line can also be

used to stabilize the march (refs. 5, 6). The second implementation will not
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work with the GEM codes, as it results in a singular matrix for the marching
procedure. Either implementation speeds convergence for point and line itera-
tive methods.

However, precise placement of grid points is not the real difficulty;
rather, it is achieving a smoothness of the grid through the interior boundary.
Smoothness will be possible only if (1) the angles of the coordinate lines
passing through the interior boundary, and (2) the grid spacings along those
coordinate lines, are "equal" (to some discretized measure) on both sides of
the boundary. This can be accomplished with Steger and Sorenson's algorithm
(refs. 12, 13) which iteratively adjusts the nonhomogeneous terms P and Q so
as to achieve the user-specified coordinate spacing and angle at boundaries.
It will also be possible to slide the grid points along the interior boundary
following some solution-adaptive scheme. The position of the interior boun-
dary itself can likewise be adjusted to follow the physics solution, e.g. the
dividing streamline in separated flow.

As an alternative to Sorenson's algorithm, we can achieve smoothness by
specifying gradient rather than Dirichlet boundary conditions in the solution
of x(,vn) and y(&,n). This is an entirely different algorithm and will gener-
ate a different grid. Unfortunately, this formulation nonlinearly couples
both the x and y boundary derivatives in both the E and n directions. This
is expected to slow convergence in the semidirect formulation (ref. 4) and in
point iterative solutions, especially if solution-adaptive procedures are
simultaneously used. Actually, a weighted combination of Dirichlet and both
derivative conditions (generalized Robbins' condition) is the obvious candidate.
A comparison of these two approaches will be undertaken in the near future; both
can be extended to 3D.

10. SENSITIVITY TO CROSS DERIVATIVES. We have generally been impressed
with the difficulty of code verification for general nonorthogonal coordinate
problems. In particular, the experience related here violated out intuition
on the sensitivity of the solutions to the cross derivative terms like x.,
n etc. The experience arose from a coding error in which the cross deva-

tTe terms were all calculated a factor of 2 larger than correct. The error
was not detected early because the solutions looked good for mild but non-
trivial geometries. For electrodes in a quadrant where the lower electrode
was described by a cos curve and the upper electrode by cosk , the grid gen-
erated and the solution for the E-field were quite accurate. Likewise, the
solution for the Rogowski electrode differed by only 0.4% from the exact *,
using only a 13x13 grid. However, in systematic convergence testing (performed
by H. Happ of Tetra Corporation), the error did not reduce as the grid was re-
fined. The coding error was detected and corrected, and the previous cases
were recalculated. The factor of 2 error in the cross derivatives proved to
affect the coordinate generation by less than 0.01% in the location of any x
and y of the grid nodes, and to affect the E-fleld (derivative of the * solu-
tion) by 0.016%. The conclusion might seem obvious, that the solutions are
very insensitive to the cross derivatives. However, this is actually quite
problem dependent. For a slit-like geometry, the coding error seriously affected
the grid generation. Iterative convergence was obtained only with the extreme
of 20 continuation steps plus the use of extensive under-relaxation of boundary
and interior points. The resulting "mesh" was a mess, with coordinate lines
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that crossed and extended outside of the physical domain, violating the maximum
principle. When the coding error was corrected, the method converged to a per-
fectly good grid in 2 continuation steps. For this class of problems, we
conclude that the grid generation process is highly sensitive to the cross-
derivatives. Aside from coding errors, this experience also seems to bear on
the robustness of alternate elliptic generating systems which use simpler equa-
tions in the transformed plane; their chances of success for difficult geometries
appears to be poor.

11. SYMBOLIC MANIPULATION AND GRID GENERATION. Coding errors such as the
one described above plague all computational work, and the chance for error
increases as the complexity of the problems increase. As noted above, we have
been impressed with the difficulty of code verification for the transformed grid
problems. We have also been impressed with the complexity of the 3-dimensional
equations for general nonorthogonal grids.

In association with Prof. Stanly Steinberg of the University of New Mexico,
we are addressing this and related problems using computer Symbolic Manipula-
tion. These are not floating-point calculations, but symbolic operations, e.g.
the chain rule differentiation, performed by computer logic. The gathering of
coefficients is likewise done symbolically, as is the actual writing of the
Fortran subroutines to define the problem. The symbolic code used is a VAX
computer version of the code MACSYMA developed over many years at the MIT Lin-
coln Laboratories.

To recapitulate: we are using MACSYMA to (1) analytically generate the
transformation equations, and (2) to actually write a Fortran subroutine to
produce the 9-point stencil defining the matrix problem.

Once the computer has written the subroutine defining the problem, the
coefficient matrices defining the stencil are passed to some canned solver, in
this case the GEM codes. Both the grid generation problem and the physics equa-
tion are solved the same way. Except for input/output and processing of the
results, as well as the passing of the matrix problem to the canned solver, the
user obtains the answer without writing Fortran or similar code.

The general second-order two-dimensional equation has been solved in this
manner, and the results verified by comparison to the hand-coded coefficient
matrices. The analytic generation of the transformation equations and the
writing of the Fortran subroutine require about 10 minutes on a VAX 780. The
three-dimensional problem has also been solved, but the computer time increases
dramatically due to the computational complexity of the chain rule operations,
similar to the classic "sorting" problem. We are currently involved in the
code verification. Rather than generate a hand-coded version, we will obtain
three-dimensional solutions of the algebraic equations (using a hopscotch SOR
"canned" solver) and verify the code by convergence testing to the exact solu-
tion of highly stretched coordinate problems.

In the near future, we intend to work on the relatively straight-forward
problems of multiple equations, higher order equations, perturbation terms in
the source term formulated so as to give deferred corrections to higher order
accuracy and/or nonlinar terms, and validation of all these.
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More difficult problems are conservation forms, upwinding (or other condi-
tional differencing), complicated boundary conditions (currently we have used
only Dirichlet conditions), and optimization. It is likely that the Fortran
code generated will always be less efficient than what could be obtained with
expert hand coding. This situation is viewed as analogous to the situation of
efficiency attainable from high-level languages like Fortran vs. assembly lan-
guage. The "efficiency" sought is not that measured by CPU seconds for code
execution, but by calendar years for code development.

Human errors are still possible in this process, but they are a different
level of error. Grand mistakes will occur, but not the petty ones of writing
S(I+l,J) when the term should have been S(I-1,J), etc.

The following areas of application for Symbolic Manipulation appear most
promising.

(1) Combination of perturbation methods and numerical methods. These
"semianalytic" approaches have already been used with some success, and are not
difficult for regular perturbdtion problems. With insight, they can be used
for singular perturbation problems, and could be used in general grid problems
to remove grid-introduced singularities.

(2) Coordinate transformations, especially in conjunction with (3).

(3) Constitutive equation testing, in areas like turbulence modeling, non-
Newtonian fluids, soil mechanics, gravitational theory.

(4) Generation and analysis of new discrete forms via finite difference,
finite element, least squares, etc. methodologies.

The prospect of virtually error-free testing of constitutive equations and
difference forms is most attractive. I predict that the use of Symbolic Manipu-
lation in these and other problems will shortly be recognized as the way of the
future, and that the practice of disciplines like computational fluid dynamics
will be revolutionized in the next decade as the power of Symbolic Manipulation
becomes widely recognized.

12. FUTURE WORK. Besides the use of Symbolic Manipulation described above,
we expect to extend the work described herein in the near future to include the
following: unsteady equations, 3-dimensional problems, magnetic effects (which
give rise to a tensor conductivity), dielectric interior boundaries (which re-
quire the precise control of the grid at interior points), solution adaptive
methods to better resolve the maxima in the E-fields, and semi-automated opti-
mization of the electrode design procedure.
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